

SIMULATING OF X-RAY STRESS ANALYSIS IN POLYCRYSTALLINE AI₂O₃ MODELOVÁNÍ RENTGENOGRAFICKÉHO TENZOMETRICKÉHO EXPERIMENTU NA KORUNDOVÉ KERAMICE

Kraus Ivo, Ganev Nikolaj

Grinding leads to changes in the stress state of the surface layers which in return may influence the mechanical properties of the parts as a whole. In most cases, compressive residual stresses of high magnitudes at the surface and steep gradients perpendicular to the surface are created. In the following, results of simulating of X-ray stress analysis are presented concerning ground polycrystalline Al_2O_3 .

Mezi různými typy syntetických látek představuje technická keramika samostatnou skupinu náležející k anorganickým nekovům. I když se jedná o relativně "mladé" materiály, základ mají v látkách již dávno dobře známých, jako jsou oxidy, nitridy, karbidy a boridy hliníku, křemíku a kovů 4. nebo 6. skupiny periodické soustavy; technicky důležitými příklady mohou být Al₂O₃, ZrO₂, Si₃N₄, SiC, TiB₂ a jejich kombinace (heterogenní keramika).

Pevnost (odolnost vůči lomu) keramiky se dá příznivě ovlivnit kromě materiálových parametrů (jako je např. heterogenita, velikost krystalků, tepelná a elastická anizotropie nebo hustota poruch) také zbytkovou napjatostí povrchových vrstev. Pro její identifikaci i kvantitativní popis se zcela jednoznačně osvědčuje rentgenová tenzometrická metoda.

Při difrakčním stanovení průběhu zbytkových předpětí je třeba vždy brát v úvahu, že hloubka vnikání používaného rentgenového záření je řádově stejně velká (maximálně několik desítek μ m) jako vzdálenost od povrchu, do níž je keramika opracováním (např. broušením) ovlivněna. Reálné rentgenografické analýze zbytkových napětí by proto měl vždy předcházet teoretický rozbor opírající se o charakteristiky zkoumaného materiálu (rentgenografický Youngův modul elasticity a Poissonovo číslo, vlnově závislý absorpční součinitel) a vlastnosti (efektivní hloubku vnikání, vyhledání dostatečně intenzívních difrakčních linií v oboru vysokých difrakčních úhlů) všech typů záření, která přicházejí principiálně v úvahu. Modelový výpočet je důležitý nejen pro volbu optimálních podmínek experimentu, ale i pro správnou tenzometrickou interpretaci naměřených mřížkových deformací.

Tyto obecné zásady budeme nyní ilustrovat na jednom z nejrozšířenějších typů současné technické keramiky - kompaktním vzorku korundu Al_2O_3 , v jehož povrchové vrstvě byl broušením vyvolán centrálně symetrický stav zbytkové makroskopické napjatosti. Před dalšími úvahami je třeba zdůraznit, že celý modelový výpočet a stejně také diskuse výsledků vycházely z předpokladu platnosti teorie elasticity v plném rozsahu i u pórovitého keramického prostředí.

Uvažujme modifikaci α -Al₂O₃ s mřížkovými parametry a = 0,4754nm, c = 1,299nm resp. (v romboedrických souřadnicích) a = 0,51203nm, α = 55,28°. Budeme-li tento materiál zkoumat zářením CuK_{α} (vlnová délka 0,154184nm), ukazuje se jako nejvýhodnější měření deformace vzdáleností systému atomových mřížkových rovin {40.10}; použijeme-li záření CrK_{α} (0,22910nm), pak lze doporučit studium rovin {220}. V prvním případě bude mít úhel rozptylu hodnotu θ (40.10) = 72,745°, pro záření CrK_{α} je θ (220) = 74,33°. K výpočtu efektivní hloubky T^e vnikání rentgenového záření (touto veličinou se rozumí tloušíka vrstvy materiálu, jejíž krystalky difraktují 63,2% celkové energie difraktované vrstvou nekonečné tloušíky) do korundu je dále nezbytná hodnota lineárního absorpčního součinitele μ ; ta má pro CuK_{α} velikost 0,0128 μ m⁻¹, u CrK_{α} je 0,0420 μ m⁻¹. Při modelování tenzometrického experimentu se dále neobejdeme bez tzv. rentgenografických elastických konstant ¹/s₂ a s₁, pomocí nichž vyjadřujeme vztah mezi mřížkovou deformací a působícím napětím.

U korundu a uvedených typů rentgenového záření jsou používány tyto experimentálně stanovené konstanty:

 $\frac{1}{2}s_2\{40.10\} = 3,02.10^{-6} \text{ MPa}^{-1}, s_1\{40.10\} = -0,46.10^{-6} \text{ MPa}^{-1}, \frac{1}{2}s_2\{220\} = 3,35.10^{-6} \text{ MPa}^{-1}, s_1\{220\} = -0,909.10^{-6} \text{ MPa}^{-1}.$

Podle obr. 1 si můžeme učinit představu, jak se mění efektivní hloubka vnikání T^e záření a CrK_a do korundu při různých úhlech ψ_0 dopadu primárního svazku na povrch vzorku. (Vztahy pro výpočet T^e jsou uvedeny např. v [1].)

Základem rentgenografické tenzometrické analýzy je měření deformace zvoleného systému atomových mřížkových rovin při různých hodnotách $\sin^2\psi$. Stanovené průběhy závisí na stavu napjatosti povrchových vrstev zkoumaného materiálu a vlastnostech (pronikavosti)

Obr.1 Závislost T^e na úhlu ψ_0 , pod nímž dopadá záření CrK_a na povrch vzorku korundu v uspořádání ω -goniometru; θ =74,33⁰, ψ je úhel mezi povrchovou normálou N a normálou k systému rovin {220}, P-primární svazek, R-reflektovaný svazek

používaného záření. Konkrétním příkladem jsou křivky na obr.3 a 4, odpovídající lineární změně napětí směrem od povrchu dovnitř vzorku korundu (obr. 2). Charakter napjatosti je dvojosý, centrálně symetrický [1].

Obr.2 Předpokládaný průběh závislosti napětí σ na vzdálenosti T od povrchu vzorku Al₂O₃

Protože přesnosti měření úhlové polohy $\pm \delta\theta = 0,01^{\circ}$ odpovídají při úhlech $\theta = 73^{\circ} \div 74^{\circ}$ změny mřížkové deformace $\delta\varepsilon \approx 5.10^{\circ}$, jsou průběhy na obr. 3 i 4 prokazatelně nelineární. Dají se z nich odvodit např. tyto závěry:

- Pokud se k výpočtu napětí σ rozhodneme aplikovat klasický postup metody "sin² ψ " (vycházející z určení směrnice přímky proložené experimentálními body ε), budou stanovené hodnoty σ záviset na zvoleném oboru sin² ψ , kde rozložení bodů ε aproximujeme přímkou. Povrchová napětí příslušejí směrnici přímky proložené body ε , jejichž souřadnice sin² $\psi \ge$ 0,5. Maximální hodnota sin² ψ odpovídá na obr.3 a 4 nulové efektivní hloubce vnikání T^c, tj. σ (T=0).

mřížkových rovin (220) na $\sin^2\psi$

- Při dané závislosti napětí σ na vzdálenosti T od povrchu se může průběh $\varepsilon(\sin^2\psi)$ stanovený zářením různých vlnových délek měnit nejen kvantitativně, ale i kvalitativně (obr.3).

[1] Kraus I.: Rentgenografie nehomogenních napěťových polí. Academia, Praha 1990.

Prof. RNDr. Ivo Kraus, DrSc., Ing. Nikolaj Ganev, CSc. Fakulta jaderná a fyzikálně inženýrská ČVUT, 180 00 Praha 8, V Holešovičkách 2, tel. (02) 8576 2416