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In this paper we present an attempt to identify experimentally the coefficients of strain energy 
function of the hyperelastic orthotropic material of the thin cylindrical air-spring. The 
components of the deformation gradient are determined from measured displacements of the 
rectangular grid drawn on the   cylindrical surface of the spring. The true Cauchy stress 
tensor is calculated from the membrane theory. The deformed shape of the spring surface is 
determined from the photographic records. The strain energy function is expressed in terms of 
tensorial invariants with regard to the assumed material symmetry. The coefficients are 
determined by means of the nonlinear least squares method.   
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1 Introduction 
    The linear constitutive relations valid for small strain  linear regime can be sometime 
extended to the large displacement small strain case by rewriting them as relationship between 
the Lagrangian strain tensor and the second Piola - Kirchhoff stress tensor. This way can 
however result in unrealistic stresses when the large strains are present. Elasticity in the fully 
nonlinear range  is established in terms of a hyperelastic strain energy potential and different 
isotropic strain energy functions are implemented in many finite elements codes, some of 
them even allow to users to  incorporate their own material law.  
   The strains of our air-spring reach about 20% in the operational pressure interval thus they 
fall into the finite strain range. We suppose the cylindrical air-spring sheathing is made of 
rubber reinforced by two families of helically wound fibers so that the mechanical properties 
of the material are direction dependent. We suppose also that the material of the spring can 
sustain finite strains without noticeable volume changes. 
    The development of the constitutive theory of anisotropic elastic or viscoelastic materials at 
finite strains is still far to be complete and the publications in this field are sparse. The 
constitutive equations of the transversally isotropic material in the nonlinear stress and 
deformation domain are presented in the papers of Verron and coll.  [1,2], Bonet and Burton 
[3]. We use the consistent constitutive model of direction dependent hyperelastic material 
presented in papers of Ogden, Holzapfel, Gasser and coll. [4-7] applied by authors to the 
problem of the mechanical response of arterial walls and of fiber reinforced composites at 
finite strains. They use a particular Helmholtz free energy function, which allows modeling 
the behavior of the orthotropic composite.  
 



 

 

2 Hyperelasticity in orthotropic case 

     Let X represents the initial position vector of any particle and let ���� φ= denotes its 

current position vector. The derivatives of the mapping φ define the deformation gradient 
tensor Fij 
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The right Cauchy-Green deformation tensor is defined by 
 

Cij = Fki Fkj, in the matrix notation C = FT F.   (2)  
 
Let σσσσij be the Cauchy true stress tensor defined in the deformed configuration and Sij the 
second Piola-Kirchhoff stress tensor relative to undeformed configuration related by 
 

S = J F-1 σσσσ F-T      (3)  
 
where J = det F = ρ0 / ρ is  Jacobian of the transformation (for the  isochoric deformation 
J=1). 
 
     For a hyperelastic material we take the material properties to be characterized in terms of a 
strain energy function (per unit volume) W(F) which must be invariant under change of 
observer frame of reference. The right Cauchy-Green tensor Cij possess such invariance thus 
the strain energy function can be written in terms of invariants of this deformation tensor. The  
the orthotropic symmetry of material restricts the way W depends on  Cij . After Verron [1,2], 
Holzapfel and Gasser [6] we define the two families of reinforcing fibers by their orientation 
vectors a1(X) and  a2(X) and we introduce the two orientation tensors  
 

A1 = a1 a1
T , A2 = a2 a2

T .    (4)  
 

     We assume the isochoric deformation and we neglect the dissipation due to irreversible 
effects. The energy stored in the fibers is assumed to be governed by an exponential function. 
The free energy function can be supposed in the form [6]    
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where        I1(C) = tr C, I4(C,a1) = C : A1, I6(C,a2) = C : A2,    (7)  

 
I1  is the principal invariant of  Cij  known from the isotropic theory  and the invariants I4 and 
I6 associated with the anisotropy caused by the two families of fibers determine the squares of 
the stretches in the fiber directions. The stress-like material parameters c>0, k1>0 and the 
dimensionless parameter k2>0 must be determined experimentally. 
     The second Piola-Kirchhoff stress tensor can be calculated by differentiation of the strain 
energy function with respect to the Cauchy-Green deformation tensor Cij  
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Figure 1. Experimental set up 

     The components of the true Cauchy stress tensor σσσσij in the deformed configuration of our   
thin cylindrical membrane are 
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where p is the internal  pressure, rc and tc denote the radius and the thickness of the membrane 
in the deformed configuration and rp is the radius of  the piston face. 
 
 
3 Experimental determination of deformation gradient Fij 
     The experiments were achieved in Hydrodynamic laboratory of TU of  Liberec on the 
equipment  enabling to measure and to record the internal pressure  and volume of the spring, 
the axial and off-axis force and the moment at the piston. The rectangular grid drawn at the 
surface of the spring is shown in Fig.1. The internal pressure was changed gradually by step 
0.05 MPa in the working range of the 
spring from 0.1 to 0.6 MPa. 
     The separate photographs of the 
deformed surface were enregistered 
by the camera. The number of steps 
in one cycle of loading and unloading 
was 22.   The negatives were scanned 
by the scanning device. The positions 
of the grid points with respect to the 
beginning of reference co-ordinate 
system were determined from the 
pictures in bitmap by means of our 
software ProLad01.                     
     The components of the current 
position vectors of grid points have 
been fitted by the functions of two 
variables by means of the linear last 
squares method and their gradients in 
the hoop and axial direction were calculated. The component F33 of the deformation gradient 
was determined from the incompressibility assumption according to the expression  
 

F33 = A0 /Ac ,       (10)  
 
where A0 and Ac denote the area of the grid fields in the reference and current position 
respectively. The calculated extradiagonal components of the deformation gradients were on 
order of two less than the diagonal ones and were neglected in the further calculations then we 
suppose the circumferential and the axial direction are the principal ones. 
     The dependence of the deformation gradient components on the loading pressure is shown 
in Fig. 2. The full lines and the single points denote the values calculated from the linear   and 
quadratic regression functions respectively. The curves show the slight hysteresis.  
 
 



 

 

     The diameter of the cylindrical surface of the spring at each loading stage was determined 
from the records. The ratio of the thickness in the deformed and current configuration is 
assumed to be   
 

tc / t0 = A0 / Ac = 1 / F33      (11)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
4 Determination of material parameters 
     The components of the Cauchy true stress tensor at the each stage of loading were 
determined from the experimental results according to the relations (9) then the components 
of Piola-Kirchhoff stress tensor were calculated from the relations (3) and the components c11 
and c22 of the right Cauchy-Green deformation tensor were calculated from the deformation 
gradient after the relation (2). We suppose the isochoric deformation and the third component 
c33 = 1 / ( c11 c22 ). 
     We suppose the reinforcing f ibers are double-helically arranged in the matrix material 
symmetrically to the circumferential direction. The angle α of fibers is supposed to be 39°. In 
such case the orientation tensors (4) are identical and the invariants I4 and I6 as well and the 
free energy function takes the form 
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 The components of the Piola-Kirchhoff stress tensor are exprimed after the relation (8) as 
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Figure 2. Components of deformation gradient F 



 

 

where the anisotropic function f(C, A) has the form 
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     The system (8a) of 42 nonlinear equations was solved by means of the different nonlinear 
least squares methods of the optimization toolbox in MATLAB code.  
     The resulting functions of the right Cauchy -Green deformation tensor shown in the 
following figures are plotted with respect to the circumferential component c11 on x-axis and 
the axial component c22 on y-axis. The Fig. 3 shows the experimental values of the Piola-
Kirchhoff stress tensor components plotted as points on the surface of the energy function 
gradients calculated according to the fitted values of the material parameters c = 2.63 MPa, 
k1 = 18.8 MPa, k2 = 13.4.  It is apparent that the parameters of the energy function appropriate 
to our material are fitted with the acceptable probability.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The free energy function (5a) for the fitted parameters and its contour lines are shown in the 
Fig. 4. The free energy function should have strict local minimum at point (1,1). As can be 
seen from the figures the energy potential is convex and anisotropic.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Piola-Kirchhoff components- circumferential in the left, axial in the right 

Figure 4. Strain energy function and its contour lines in the experimental range 



 

 

 5 Conclusion 
     The problem of the identification of the material parameters was solved.  The proposed 
strain energy function will be implemented into FEM calculus of states of deformation of our 
cylindrical air-spring.  When the fitted material parameters should be used in a prediction of 
states of deformation these should not be far from the range of deformation for which the 
experimental tests were conducted. The two-dimensional formulation used in the parameter 
fitting does not, in general, permit the stress response under certain combined loading (such as 
inflation and torsion) to be modeled. However such formulation, because it omits c12, c13 
and c33 is inherently limited to specific kinematics or to the membrane description. The two-
dimensional anisotropic energy function may be valuable under some conditions, but it should 
be used with caution. This approach, which is concerned mainly with fitting the constitutive 
equations to the experimental data, is not capable of relating the deformation mechanism to 
the known architectural structure of the membrane wall. The material parameters have no 
direct physical meaning and are therefore treated as numbers without clear physical 
interpretation. 
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