
OPTICAL DETERMINATION OF CONSTITUTIVE 
EQUATIONS PARAMETERS OF NONLINEAR MATERIALS 

���������	�
�
1, Jan Korouš1, Jaroslava Zemánková1, Petr Jaroš2 

Abstract 

The paper presents simple optical experimental method for determination of constitutive equations 
parameters of nonlinear materials. Usually only one extensometer or strain gauge is used for the 
determination of strain in loading direction and one for the determination of a contraction in 
standard tensile test. It is necessary to have a number of the specimens for determination of 
constitutive equation for nonlinear material behaviour. Optical observation gives us the 
possibility to determine strain and contraction in large region of test specimen. It is possible to 
use only one specimen with this technique. On other hand, it isn’t too easy to determine material 
parameters of hyperelastic material with standard experimental techniques but optical method 
provide number of experimental results in simple way. 

Key words: Optical experimental method, Grid method, Nonlinear fracture mechanics, 
Gurson-Tvergaard damage model. 

Introduction 
Gurson-Tvergaard damage model is widely used nowadays in nonlinear fracture mechanics. 
This approach, so-called „local approach“, has been the subject of many research activities in 
the recent years. It has been shown that the local approach provides a complementary 
approach to the conventional fracture mechanics methods and may be used when crack 
growth simulation is required. A critical aspect of this approach is an accurate assessment of 
the local void parameters in volume by using experimental calibration procedures [1]. 

A methodology was developed for adjusting the parameters of the Gurson-Tvergaard model 
using the simulation of axisymmetrical notched tensile specimens. Notched tensile specimens 
offer the advantage of obtaining a very extensive zone affected solely by nucleation, which 
allows this parameter to be well adjusted. The process of parameter adjustment must be 
carried out in the number of specimen with different geometric configurations to determine 
the effect of the stress triaxiality on these parameters [2]. New approach to this problem was 
developed in the Institute of Theoretical an Applied Mechanics. Black lines were created on 
axisymmetrical notched tensile specimens (see Fig. 1.) with collaboration with Techlab2 
(Prague company).  
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The lines were used as a measuring grid. 
Software developed using Matlab is able 
to detect the edges of the each line. 
Differences between unloaded and loaded 
specimen gives us tensile strain time 
evolution and contraction on each line.  

Each measuring line corresponds to 
different diameter of the specimen. This 
model may be seen equivalent to number 
of the specimens with different cross-
area. Therefore, in our case we obtained 
experimental data from ten grid lines. 

This methodology is useful also for 
determination of material parameters of 
other mechanical problems, like 
determination of material parameters of 
hyperelastic materials. 

Experimental setup 
The specimen was observed by a black-and-white digital CCD camera with resolution 
1200x1000 pixel. Frame rate of this camera is 25 frames/sec. Used macro-lens has small 
optical angle and high resolution. This lens has the telecentric behaviour in used 
magnification. The loading force was recorded from the loading machine. Time was used as a 
scale for later processing. 

Data storage 

One frame represents 767 kB with above mentioned resolution. It means almost 20 MB per 
second. It is impossible to record whole experiment with the full camera frame rate on PC 
HD. So, one frame was continuously saved on the HDD every second. Data from the last 5 
seconds were recorded in the full frame rate and stored in the RAM buffer. The RAM buffer 
was written on the HDD at the end of the experiment. 

Duration of the whole experiment was 564 sec and 168 frames were analysed. 

Determination of strains and contractions on the measuring lines 

Tensile strains were solved as follows: 
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Where line_edge represents the vertical coordinate of the measuring line edge. The index i 
corresponds with the measuring line number (see Fig. 1.), the index t represents the actual 
experiment time and the index 0 corresponds with the unloaded specimen stage.  

Vertical coordinates of the measuring line edges were identified in two steps: 

1. Position of the measuring line centres 
Data that represent grey level in the vertical profile (averaged by 61 columns) were 
interpolated by a quadratic polynomial function in the sliding window. This profile goes 

 
Fig. 1: Geometry of specimen. Diameter of a 
bar is 18 mm. Radius of the notch is 12 mm. 
Measuring points determined by image data 
processing are drawn in the picture. 



thought points numbered by 1-10 in Fig.1. The scale of the sliding window determines the 
scale of peaks, which should be localized. Extremes of ten interpolating polynomial function 
with the highest first constant correspond to positions of the measuring lines. On our 
specimen ten measuring lines have been done.  

Eleven interpolating function with the lowest first constant of the polynomial function 
correspond to the position of the gaps between the measuring lines. 

2.  Position of the edges of one measuring line 
The data between line and gap 
position were interpolated by a linear 
polynomial function in the sliding 
window. The scale of the sliding 
window determines the scale of the 
slope, which should be localized. 
Interpolating polynomial function 
with the highest first constant 
correspond to the sliding window 
position on which maximal 
derivation is expected. Data in the 
determined window were 
interpolated by a polynomial 
function of the 3

rd
 order. The 

interpolation function inflex point 
should be the expected position of 
the line edge.  

Contractions were solved similarly as tensile strains: 
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Where spec_edge represents the horizontal coordinate of the specimen edge in the measuring 
line position. 

Horizontal coordinate of the specimen edges in the measuring line position were 
identified as follows: 

Data that represent grey level in the horizontal profiles (averaged by 3 rows) were 
interpolated by a linear polynomial function in the sliding window. These profiles go thought 
points labelled by Li-Ri in Fig.1, where i is measuring line number. The scale of the sliding 
window determines the scale of slope, which should be localized. The interpolating 
polynomial function with the highest first constant corresponds to the sliding window position 
on which maximal derivation is expected. Data in one window were interpolated by a 
polynomial function of the 3rd order. Its inflex point is the expected position of the line edge. 

Gurson-Tvergaard Needlemant model 
For description of metal materials containing voids, the so-called Gurson model [3] is often 
used. There are many modifications of this model but a simple form was applied in this paper, 
the Gurson-Tvergaard-Needleman model.  

Originally, the constitutive model was derived from a cell of material containing a void. The 
homogenous material surrounding the void is called as matrix material. Using the relation for 

 
Fig.2: Tensile strain on the specimen 1/25 sec before 
failure. 



behaviour of a spherical void in a remote macroscopic stress and strain field according [4], 
Gurson described the yield condition in the form: 
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Where σe is the von Mises equivalent macroscopic stress, σm is the mean macroscopic stress, 
σ is the current yield stress of the matrix material and f denotes the current void fraction. 
Constants q1, q2 and q3 have been introduced by Tvergaard [5] in attempt to improve the 
model behavior. 

The void evolution, i. e. the voids nucleation and 
growth, is described by equation: 
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The eq. (4) consists from two parts where dfgrowth 
gives the relation for growth of the existing voids 
whereas dfnucletion enables to take into account 
nucleation of new voids. Following expressions are 
usually used: 

p
kkgrowth dfdf ε)1( −=  (5) 

p
nucleation Addf ε=  (6) 

Fig. 4: Dependence “Tensile strain–Loading force” is drawn in the figure for the first 
difference (between first and second measuring line) and for middle difference (between fifth 
and sixth measuring line). Experimental and FEM results are compared. 

 
Fig.2: Fraction of voids coming from 
Gurson-Tvergaard-Needleman 
damage model for loading F=38.67 
kN. 
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where dεkk
p denotes the trace of the increment macroscopic plastic strain tensor and pε is the 

equivalent matrix plastic strain. Parameter A can be a function of the matrix stress and strain. 
In this paper, the relation according Chu and Needleman [6] was used: 
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Constants fN, sN, and εN are material constants. Several combinations of these parameters were 
tested. 

Note, that in all analysed cases, the coalescence of voids was not taken into account. For the 
calculations, the program WARP3D [7] was used. The macroscopic plastic strains was 
calculated using flow rule associated with the condition (3): 
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where σij are the macroscopic stress tensor components. The integration of the plastic strain 
rate over the step was performed using backward Euler procedure. 

Fig. 5: Dependence “contraction–loading force” is drawn in the figure for the first measuring 
line (No.1) and for middle measuring line (No.5). Experimental and FEM results are 
compared. 
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Conclusions 
• The method is able to provide large number of data for numerical simulation. 

• No extra laboratory conditions are needed (in comparison with interferometric optical 
methods). 

• Fully automatic image processing was used (168 frames were analysed). 

• The experimental and FEM numerical results have good correlation (see fig. 4 and fig. 5).  

• The comparison between the numerical simulations based on “classical” von Mises 
material model and Gurson-Tvergaard damage model shows significant advantage of 
Gurson-Tvergaard model. This model will be used for numerical simulations of nonlinear 
fracture problems. 

• This methodology is useful also for determination of material parameters of other 
mechanical problems. This optical method was used for “Experimental Determination of 
Constitutive Equation of Hyper-elastic Material” for instance [8]. 
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