
 

IDENTIFICATION  OF  PARAMETERS  OF  HYPERELASTIC 
MODELS  FROM  BIAXIAL  TENSION  TESTS 

Miroslav Zemánek1, Jiří Burša2 

Abstract: Relationships between stress and strain components are nonlinear isotropic for elastomers such as 
rubber and nonlinear anisotropic for soft tissues such as artery wall. Isotropic as well as orthotropic 
hyperelastic constitutive equations are used for describing these properties. The quantitative definition of 
hyperelasticity is that material behaviour is such that the stress component is the derivative of an elastic 
potential function (or strain energy density function) with respect to the corresponding strain component. For a 
credible identification of hyperelastic constitutive equations and their parameters, it is necessary to use 
appropriate types of experimental tests. Typical tests for isotropic hyperelastic materials are: volumetric test, 
equibiaxial tension test, uniaxial tension test and pure shear test (or some of their equivalent tests). 
Combinations of data from multiple tests will enhance the characterization of the hyperelastic behaviour of a 
material. This paper presents a structural design of the equipment for biaxial testing of soft tissues as well as 
rubber, an analysis of the test types necessary for a credible identification of constitutive relations and their 
parameters and a method allowing the identification of parameters of  constitutive relations. 
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1.  Introduction 
Uniaxial tension tests alone of soft tissues or rubbers are not sufficient for identification of 
parameters of hyperelastic material models that aim to predict the material behaviour in 
various types of multi-axial loading states. An credible modelling of hyperelastic materials 
requires additive test data under conditions of equbiaxial tension and planar tension. A 
common assumption valid for most of these materials is their incompressibility. Finite 
Element Analysis (FEA) is used for modelling this material behaviour. FEA software (e.g. 
ANSYS, ABAQUS) can calculate parameters of hyperelastic constitutive equations from least 
squares fits to this data. 

2.  Experimental equipment for biaxial tension tests 
The experimental equipment (Fig. 1) consist of bedplate with two servo motors and 
orthogonal screws, four carriages, equipment for clamping of the specimens, specimen bath 
with physiological saline solution, support stand with programmable camera and computer 
with software system for test control. Equipment for clamping of the specimens consist of 
four carriages with four clips per each one and two sensing heads with force transducer. The 
specimen is clamped by two or four clips on every edge because the loading must be 
distributed uniformly. The method of clamping should not damage the specimen. The 
specimen of arterial wall is immersed in physiological saline solution with specified 
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temperature and pH. As any contacting strain gauges are unacceptable in soft tissue 
applications, contactless strain evaluation is required. A programmable CCD camera is used 
as one of the non-contacting methods that involves the tracking of a finite number of closely 
spaced markers that are marked or affixed to the specimen. Measurement of strains in loading 
directions is based on evaluation of the position of markers before and during the loading. The 
reference markers - four black points are marked on specimen [1] or 1 mm diameter steel 
balls are glued onto the specimen surface [6], [7] (Fig. 2). Then the specimen is loaded by 
controlled forces or displacements. Position of reference points or steel balls are on-line 
monitored by the CCD camera and saved for processing by software for off-line image 
analysis Tibixus (produced by P. Skácel). The output data consist of the complete 
deformation gradient tensor (inferred from the black points motions), loading forces and 
Cauchy (true) stresses. 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                
           
       
 
 
 
 
 
 
 
 
  Fig. 1. Experimental equipment 
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Fig. 2. Gripping of a rectangular specimen with reference points 

3.  Types of tests 
Mechanical tests of soft tissues are realized „in vitro“ using a square or rectangular specimen. 
The independent control of displacements in both directions enables us to obtain the stress-
strain characteristics for various states of biaxial tension. It is possible to obtain stress-strain 
characteristics in the following types of test [2], [5] (Fig. 3): 

a) equibiaxial tension test - with strains equal in both principal directions (curve 1) 
b) biaxial tension tests - uniaxial with constraining of transversal contraction (curves 2, 3) 
c) biaxial tension test with proportional strain components (curve 4) 
d) biaxial tension test with constant strain in either „1“ or „2“ principal direction (curves 5, 6) 
e) uniaxial tension tests in either „1“ or „2“ principal direction (curve 7, 8) 
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Fig. 3. Strain states in various types of tests 

 
 



4.  Constitutive relations 
Hyperelastic materials are described in terms of a strain energy potential W (or strain energy 
density function) which defines the strain energy stored in the material per unit of reference 
volume as a function of the strain at that point in the material. Several forms of strain energy 
potential provided for the simulation of incompressible or nearly incompressible hyperelastic 
isotropic materials [10], [11] are presented below: 

4.1    Isotropic hyperelasticity 
a) Neo-Hookean        
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   where: G is initial shear modulus of material, d is material incompressibility parameter     
defined by / 2K d=  where K is initial bulk modulus, 1I is first modified invariant of right 
Cauchy-Green deformation tensor Cij and J is the total volume change. For biaxial 
tension testing:  
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   where iλ are principal stretch ratios defined by: 0/ 1, 2,3i i il l for iλ = =  where li are  
deformed dimensions and lio are original dimensions of specimen. 

 
b) Mooney-Rivlin 

   The form of the strain energy potential can be defined for: 
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   where c10, c01, c20, c11, c02, c30, c21, c12, c03 are material constants. 
 



c) Polynomial Form 
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   where cij are material constants. 
 

d) Ogden Potential 
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  where µi, αi are material constants. 
 

e) Arruda-Boyce Model 
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  where G, αL are material constants. 

For soft tissues applications, the most frequent two-dimensional models of the strain-energy 
function describing orthotropic hyperelastic material behavior [1], [8] are: 

4.2    Orthotropic hyperelasticity 
a)  Polynomial model: Patel and Vaishnav (1972):  

     2 2 3 2 2 3
11 11 22 22 11 11 22 11 22 22 (9)W AE BE E CE DE EE E FE E GE= + + + + + +  

   where A, B, C, D, E, F, G are material constants and ijE are components of Green-
Langrange      strain tensor. 

b)  Exponential model:  

•  Fung (1973); Fung, Fronek, Patitucci (1979): 
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where 1 2 3, , ,C c c c  are material constants 

•  Maltzahn (1984): 
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where 1 2 3, , ,C c c c  are material constants 

c)  Logarithmic model: Takamizawa and Hayashi (1987) [3]: 
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  where 1 2 3, , ,C c c c  are material constants 

 

 



If such a strain-energy function exists, the stress components can be obtained as derivatives of 
W with respect to strain components. For biaxial tension testing:   
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where ijS is 2. Piola Kirchhoff stress tensor which is conjugated with Green Lagrange strain 
tensor ijE . 

5.  Data Fitting 
The next step in the analysis is fitting of the nonlinear constitutive model to experimental 
data. During an equibiaxial tension test, a hyperelastic specimen is loaded equally along two 
of its axes. For isotropic material, the principal stretch ratios in the directions being loaded are 
identical. Hence, for equibiaxial tension, the pricipal stretches iλ are given by [10], [11]: 

1 2 (14)L stretch ratio in direction being loadedλ λ λ= =  

Utilizing incompressibility condition: 
2

3 (15)L stretch in direction not being loadedλ λ−=  

The strain energy potential can then be defined as function of the parameters below: 
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For equibiaxial tension, the deviatoric strain invariants then become: 
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From virtual work: 
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where SL is the component of the second Piola-Kirchhoff stress tensor. And it follows that: 
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The principal true (Cauchy) stress for equibiaxial tension: 
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5.1    Nonlinear least square fit for isotropic hyperelastic materials: 

FEA software (e.g. ANSYS, ABAQUS) contains curve fitting toolbox for 
approximation and determination of material constants for isotropic hyperelastic 
material models. Experimental data are smoothed to remove the noise from the test data 
based on the Savitzky-Golay method and the material constants are determined through 
a nonlinear least-squares-fit procedure based on Marquard-Levenberg algorithm. The 
least squares fit minimizes the sum of squared errors between experimental and 
 



predicted Cauchy stress values. The sum of the squared errors is defined by: 
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where E is least squares residual error, 
i

ES  is a stress value from the test, and ( )i jS c  
comes from one of the nominal stress expressions derived above and n is the number of 
experimental data points. Once the strain energy potential is determined, the behaviour 
of the hyperelastic model is established. However, the quality of this model behaviour 
should be assessed: the prediction of material behaviour under different deformation 
modes should be compared with the experimental data.  

5.2    Non-linear least square fit for orthotropic hyperelastic materials: 
Fitting of the constitutive model to experimental data is achieved by optimizing 
(minimizing) the stress-based nonlinear function [9]: 
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predicted by the constitutive model for i-th data record and 11
iS and 22

iS  are the 
experimental 2.Piola Kirchhoff stresses calculated directly from the original 
experimental data and n is number of experimental data records. 

Alternatively to the stress-based approach expressed by eq. (22), an energy-based 
nonlinear function fw may also be chosen. Thus: 
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where iψ is the strain energy for i-th data record predicted by the constitutive model and 
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is the strain energy computed from experimental data. From a mathematical point of 
view both approaches are equivalent.  

Transformation of experimental data to a mathematical model is shown in the example 
described bellow: 

5.3    Determination of material constants for orthotropic hyperelastic material models 
In this example the energy-based approach and numerical integration of Eq.(24) are 
used. Thus: 
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Strain-Energy function W is computed from experimental data of three types of tests: 

- two biaxial tension tests with constrained transversal deformation: (Fig. 3) - (curves 2, 
3) 
- equibiaxial tension test: (Fig. 3) - (curve 1)  

Using an off-line image analysis software Tibixus, Cauchy stresses and principal stretch 
ratios in two orthogonal directions are obtained. These data are then expressed as 
Kirchoff stresses (2.P.K.) and Green-Lagrange strain. The parameters 1 2 3, , ,C c c c  are 
then obtained by means of the standard nonlinear Levenberg-Marquardt algorithm for 
multivariate nonlinear regression by minimizing the strain-energy function. In the 
physiological range of loading, the best-fit parameters are obtained by using logarithmic 
model for the strain-energy function (Fig. 4):  

 
Fig. 4. The regression surface of strain-energy function 

 
When the strain-energy function with the known constants exists, the stress components 
can be obtained as derivatives of W (Eq. 13) with respect to strain components: 
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Relations between Cauchy 11 22,σ σ  and Kirchoff stresses (2.P.K.) stress 11 22,S S  are: 
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Comparison between experimental data and data calculated by Eq. 26, 27, 28, and 29  
are on Fig. 5, Fig. 6, Fig. 7 (stress-strain curves): 
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Fig. 5. Biaxial tension test – uniaxial in „1“ direction with constraining of transversal 
contraction in „2“ direction 
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Fig. 6. Biaxial tension test – uniaxial in „2“ direction with constraining of transversal 
contraction in „1“ direction 
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Fig. 7. Equibiaxial tension test 

6.  Conclusion 
This paper presents a structural design of the equipment for biaxial testing of elastomers and 
soft tissues, such as artery wall and a method allowing the identification of constitutive 
relations and their parameters for FEA modelling. The advantage of the presented 
experimental equipment is in the possibility to obtain the stress-strain characteristic for 
various states of biaxial tension e.g. equibiaxial, biaxial with constant or proportional strain 
components and standard uniaxial tension test. Non-contacting strain measurement techniques 
are used to eliminate problems with deformation and local stress concentrations at the 
contacting points. Simulation of physiological conditions during testing is required for soft 
tissue applications, therefore specimens should be tested in a temperature-controlled saline 
(physiological) bath. 
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