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Abstract: Mechanical engineers are familiar with the simple shear – state of stress 
induced e.g. by twisting of a thin tube. On the other hand, the concept of the pure 
shear used by experimentalists dealing with rubber and other elastomers is esoteric a 
little bit. The pure shear experiment performed is not what most of us would expect. It 
appears at first glance to be nothing more than a tensile test with a very wide 
specimen [1]. Our paper tries to shed some light upon this concept. Kinematics of 
simple shear and pure shear is compared from the viewpoint of theory of finite 
deformations. The role of the pure shear experiment in testing of rubber-like solids is 
explained. Results of pure shear experiment are presented. 
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1. Introduction 
When we look for papers concerning pure shear and simple shear we usually fall in 
fervent discussions amongst geologists about the McKenzie's pure shear model [2] 
and the Wernicke's simple shear model [3] of the deformation process that affected 
the continental lithosphere in the geologic past. Both models assume a constant 
volume deformation. In the case of pure shear the material uniformly elongates in 
one direction and uniformly shortens in one perpendicular direction while its size 
does not change in the second perpendicular direction. In the simple shear, on the 
other hand, the material moves parallel to a given direction like a deck of cards and 
the size perpendicular to the shear plane does not shorten.   

There is a great variety of shear test methods developed and used in 
experimental mechanics and all experimentalists know how difficult it is to obtain a 
reasonably pure and uniform shear stress state in the test specimen. If we are dealing 
with materials undergoing small strains, the shear test is usually seen in terms of 
state of stress and kinematics plays a minor role. On the other hand, in the case of 
rubber or elastomeric materials which are capable of large deformations and are 
considered as incompressible, it is appropriate to examine the shear test from the 
kinematical view-point.  

Experimental measurements of the response of rubber-like materials are 
conducted usually under plane stress state.  
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Fig. 1. Pure shear test device. 

Rivlin and Saunders [4] described a tensile test with a specimen cut from a 
sheet of vulcanised rubber that was much wider than long similar to Fig. 1. They 
denominate as pure shear this homogeneous deformation in which one of the 
stretches in the plane of the sheet is maintained at unity, while the other is varied. 
Their specimen had dimensions 95x20x0.87 mm. They reported that although the 
rectangular form of specimen was not accurately preserved, the width of the 
specimen at the horizontal axis varied only by 3% while the stretch in the direction 
of tension reached value λ=2.2.  

The state of stress in the pure shear experiment is biaxial – however both 
principal stresses are tensile in contrast to the simple shear caused by torsion in a 
thin tube.  

The paper is structured as follows. In Section 2 the basic kinematics of the 
pure shear and simple shear is explained. In Section 3 the constitutive relations 
useful in evaluation of pure shear experiment are presented. Section 4 presents 
results of pure shear experiments. Finally, some concluding remarks are addressed 
in Section 5. 
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2. Kinematics 
Pure shear kinematics is illustrated in Fig. 2a. We suppose that the material 
submitted to pure shear is incompressible then the product of principal 
stretches 1 2 3 1λ λ λ = . If the principal stretch in the direction of tension is 2λ = λ  
and the stretch in the direction of width of specimen is 1 1λ = (the width does not 

change) then the stretch in the direction of thickness is 1
3

−λ = λ . We describe such 

motion by relations 1
1 1 2 2 3 3, , .x X x X x X−= = λ = λ  The deformation gradient F, 

the right stretch tensor U and the rotation tensor R of pure shear are: 

 
1

1 0 0
0 0 , , ,
0 0 −

⎡ ⎤
⎢ ⎥= λ = =⎢ ⎥
⎢ ⎥λ⎣ ⎦

F U F R I  (1) 

where I is the unit tensor. We see that the principal axes do not rotate in course of 
the pure shear experiment. It is not so in the case of simple shear as we will see 
thereinafter. 

The simple shear motion is depicted in Fig. 2b. We suppose that the 
dimension of specimen in the direction of third axis does not change. The motion is 
described by relations ( )1 1 2 2 2 3 3 where, , , tan .x X k X x X x X k= + = = = γ   The 
deformation gradient F and the right Cauchy-Green deformation tensor C are 

 
Fig. 2. Kinematics of pure shear (a) and simple shear (b). 
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k k
k k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

TF C F F  (2) 

We see that detF = 1 then the motion in simple shear is isochoric. We shall 
determine principal stretches so the components of the right stretch tensor U in the 
principal axes. We perform first the spectral decomposition of the deformation 
tensor 2 2 2

1 2 3( , , ).diag= λ λ λC  We know that 3 1λ = (plane deformation) and the 
remaining eigenvalues fulfil equation  

 

( ) ( )

( ) ( )

2
4 2 2

2 2

22 2 2 1 2

1
2 1

1
0 2 1 0

1

2 0

.

k
k

k k

k k− −

−

− λ
= ⇒ λ − λ + + =

+ − λ

⇒ λ + λ − + = ⇒ λ + λ =

⇒ λ = λ

 (3) 

It is evident that the stretches in the principal directions in simple shear have the 
same pattern as in pure shear.  i.e. 

 ( )1 2

0 0
0 0 , where 4 / 2.
0 0 1

U k k−

λ⎡ ⎤
⎢ ⎥= λ λ = ± + +⎢ ⎥
⎢ ⎥⎣ ⎦

 (4) 

The deformation in simple shear is a combination of a pure stretch and a pure 
rotation. For plane deformations, the components of rotation tensor can be directly 
computed [5] by 

 

( ) ( )

( ) ( )

( ) ( )

11 22 12 21

21 12 22 11

2 2 2
11 22 12 21

2 2

21
24

2cos , sin
4 4

1tan tan .
2 2

F F F F
kF F F F

kkF F F F

k
k k

k

+ −⎡ ⎤
⎢ ⎥− + ⎡ ⎤⎣ ⎦= = ⎢ ⎥−+ ⎣ ⎦+ + −

−
⇒ θ = θ =

+ +
−

⇒ θ = = − γ

R

 (5) 

Then for small shear deformation γ the angle of polar rotation 2.θ = − γ  Note that 
a positive γ corresponds to a negative (clockwise) polar rotation angle. 
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3. Constitutive relations 
The stress response of hyperelastic materials is derived from a strain-energy 
function Ψ(F) of the deformation gradient. A variety of suitable strain-energy 
functions can be found in literature [6, 7]. We confine us to well-known Ogden 
model [8] for incompressible rubberlike materials 

 
( ) ( )1 2 3 1 2 3

1

1

, , 3 ,

2 = ,

n n n

N
n

n n

N

n n
n

α α α

=

=

μΨ λ λ λ = λ + λ + λ −
α

μ μ α

∑

∑
 (6) 

where μ denotes the shear modulus. Material parameters must satisfy the following 
essential conditions 

 0.n nμ α >  (7) 

Components of Cauchy stress for an incompressible material are derived [6] from 
the strain energy function ( )1 2 3, ,Ψ λ λ λ  

 , 1,2,3,a a
a

p a∂Ψσ = − + λ =
∂λ

 (8) 

where p is unknown hydrostatic pressure which is determined from equilibrium 
conditions at the boundary. In the case of pure shear the faces of specimen are 
without any loading 3 0σ =  thus  

 3
1

.n

N

n
n

p α

=

= μ λ∑  (9) 

If we substitute 1
1 2 3, 1, −λ = λ λ = λ = λ  and p into Eqs. (8) we obtain stress-strain 

relations 

 
( )

( )

1
1

2
1

,

1 .

n n

n

N

n
n

N

n
n

α −α

=

−α

=

σ = μ λ − λ

σ = μ − λ

∑

∑
 (10) 

The material parameters nμ (shear moduli) and nα (dimensionless constants) have 
to be determined from experimental stress-deformation data. There is usually no 
need for more than three pairs of constants in practice to achieve a good correlation 
with the experimental data. 
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Fig. 3. Strain controlled loading. 

 
Fig. 4. Force response. 
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4. Experiment 
Pure shear experiment [9] depicted on Fig. 1 was performed on the testing machine 
TIRA 2810. The rectangular specimens 220x20x2.9 mm were cut from a sheet of 
styrene-butadiene rubber SBR/E of hardness 74 Shore A.  

The loading was strain controlled and specimens were loaded gradually with 
20 min relaxation delay between every loading step see Fig. 3. The force F response 
is shown on Fig. 4. The values of stress at the end of relaxation periods are regarded 
as the equilibrium stresses Fig.5. The stresses were evaluated considering the change 
of cross-sectional area A0  

 
2

1
0

.F
A
λσ =  (11) 

The parameters of Ogden model were fitted from experimental stress-deformation 
data. The set of overdetermined equations Eqs. (101) was solved by means of Matlab 
Optimization Toolbox. The equations are linear in parameters μn and nonlinear in 
parameters αn thus a succession of approximate solutions has been generated by 
linear and nonlinear last squares alternately till conditions of optimization were 
satisfied. We remind that the requirements in Eqs. (7) are crucial and decisive for the 
admissibility of every approximate solution. The comparison of the experimental 
and fitted stress σ1 is on Fig. 6 together with the stress σ2 calculated from Eqs. (102). 

5. Conclusion 
Kinematics of pure shear and simple shear were compared. Constitutive relations of 
pure shear based on Ogden strain energy function were reminded. The results of the 
pure shear experiment were presented. Pure shear is a simple and easy   
experimental arrangement producing biaxial state of stress. 

 
Fig. 5. Stresses at the end of relaxation period. 
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Fig. 6. Comparison of experimental and fitted values of the loading stress σ1 and the graph of the 
stress in transversal direction σ2 calculated from Eqs. (102). 
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