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Abstract: This paper is focused on the relaxation inflation tests of a composite tube 

manufactured from three layers. The first layer is formed from a thin latex tube, the 

second one, that increases a stiffness of specimen, is formed from a helically wounded 

textile rubber band and the third one is elastic matrix. Elastic matrix connects the first 
layer with the second one also.  

Experiments are based upon evaluation of recorded pressure responses to the stepwise 

increase of water volume inside the inflated pipe. The aim of experiments is to 

identify a relaxation parameter of a suggested viscoelastic constitutive equation, 

which is based upon the Haslach’s principle of maximum dissipated energy during 

transition from a non-equilibrium towards the equilibrium state. Results obtained from 

simulations were compared with experimental measurements carried out with a 

viscoelastic tube and relaxation parameter was obtained.  
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1. Introduction 

Viscoelastic processes are non-equilibrium time dependent processes. Some energy 

is reversibly stored during loading and some is dissipated to heat. Several 

approaches exist for viscoelastic behaviour description of solids.  

One approach is utilization of the hereditary integral formulation based on 

Boltzmann superposition principle for modelling nonlinear viscoelastic behaviour 

developed by Coleman and Noll [3] and used for soft tissue by Fung [4] who named 

this approach as Quasi-linear viscoelasticity (QLV). Many researchers adopted and 

adapted QLV theory to fit the responses of soft tissues Abramowitch and Woo [1], 

Funk et. al. [5], Lynch et. al. [13], Sarver et. al. [14], Toms et. al. [15], Valdez-Jasso 

[17], Craiem [18]. There are also phenomenological models that are derived from 

parallel or serial connection of elastic springs and viscous dampers Valdez-Jasso 

[16], Bessems [2]. Other approach, Holzapfel [10, 11], describes viscoelastic 

processes by evolution equations of inelastic strains or stresses, however the 

foundations of this approach are still derived from phenomenological models of 

connected springs and dashpots. The transversely isotropic viscohyperelastic 
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material introduced in the Limbert and Middleton model [12] is based on a 

definition of a general Helmholtz free energy function which is a sum of 

hyperelastic and viscous potential. Their approach is capable to describe anisotropic 

viscous behaviour also. Haslach [6- 9] introduced a new class of non-equilibrium 

thermoviscoelastic evolution equations based on long-term behaviour and a 

maximum dissipation principle for polymers, rubbers and soft tissues. The non-

linear evolution equations (1) for thermoviscoelastic behaviour in terms of state 

variables, xi, and control variables, yi, are generated from long-term constitutive 

models represented by an energy function Ψ used for elasticity, see below. 

 

   (1) 

This approach reduces the number of experiments and there is no need to 

obtain creep or relaxation function for description of these phenomena. Moreover, 

the classical spring and dashpot linear models were recovered from this hypothesis 

(Kelvin-Voight model, Standard Linear Solid model). 

This paper deals with a relaxation experiment on a composite tube. Only one 

specimen of elastic tubes was tested: a simple tube having a composite three layers 

structure. The primary aim is to obtain a relaxation parameter of the constitutive 

model for description of the tested specimen during relaxation test. Haslach’s 

construction of thermostatic nonlinear evolution equation was utilized for this 

purpose. The investigated parameter is relaxation parameter.   

2. Methods 

2.1. Manufacture of composite tube 

Composite tube represents a physical model of blood vessel. Physical model was 

developed as tube with three layers. The first (intima) layer was formed from a thin 

wall latex tube. The second layer (media) was formed from rubber band helically 

wounded on the outer surface of the first layer. The rubber band increases its 

stiffness significantly when a large deformation is achieved (tested bands have the 

limiting stretch ratio 2). The connection between the first and the second layer was 

realized by a silicone matrix. Silicone matrix formed also the third layer. 

 

2.2. Experiment - Inflation test 

Inflation test was carried out to obtain the dependence between pressure and 

volume, i.e. to provide information on purely elastic behaviour of the tested 

specimen at equilibrium state. The physical model was inflated by a small 
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predefined increment of volume and the corresponding pressure was recorded by a 

pressure transducer. 

2.3. Experiment – Relaxation test 

The pressure time-dependent characteristic was obtained from relaxation test. 

Relaxation experiment proceeds this way: at the beginning the tested specimen was 

in equilibrium state with inner zero overpressure, then the physical model was 

almost instantaneously pressurized by defined increase of the volume with aid of 

syringe. The pressure transducer started record pressure at the same time when the 

tested specimen was inflated. Experimental setup scheme is showed bellow Fig. 1.  

 

Fig. 1. Relaxation experiment setup 

The tested specimen had three degrees of freedom (radial, circumferential and axial 

direction). 

The dimensions of the tested specimen are presented in Table 1.  

Table 1. The dimensions of the physical model 

Dimension Size (mm) 

Inner radius R0 8.65 

Wall thickness H0 1.86 

Length of the specimen L0 54.22 

  

 

2.4. Mathematical model 

Mathematical model is derived from system of equations (1). The simplification of 

the mathematical model is based on assumption that pressure is constant in entire 

water volume of the tested specimen. Therefore, the system of evolution equations 



 

(1) is reduced to one equation (2) where the state variable x, correspond to pressure, 

p, and the control variable, y, coincides to the specimen volume V.  

2
2

2

dp
k V

dt p p

 


    
      

   

       (2)   

Constant k represents relaxation parameter in (2). Now, it is necessary to define a 

density energy function Ψ. In the case of stress relaxation test, it is suitable to define 

the density energy function as the complementary energy by equation (3). 

0

p

Vdp            (3) 

The differential equation (2) is solved by means of implicit Euler method. Initial 

values are obtained from experimental measurement. Volume V in (2) is fixed 

during the experiment. 

3. Results 

3.1. Elastic response 

The inflation test of the blood vessel physical model revealed nonlinear volume- 

volume-pressure relationship, see Fig. 2. 

 

 

Fig. 2. Inflation test results 

The model (linear spline model) was adopted for description of the pure elastic 

behaviour. The model fit experimental data successfully. 

 

3.2. Time-dependent response 

Results from simulation and from relaxation test are shown in Fig. 3. Model is 

represented by blue line and red markers correspond to the experimental data. In 



 

order to achieve the appropriate relaxation the relaxation coefficient k was set to 6E-

11 m
3
Pa

-1
s

-1
. 

 

Fig. 3. Relaxation test results 

4. Conclusion 

Inflation test data was fitted successfully. The one parameter model utilized for 

simulation of relaxation test is not with good agreement with experimental data from 

measurement. The inaccuracy of the simulation may be due to the fact that the 

model was designed as an isotropic 0D model. Therefore, it is possible that 

simplifying assumptions for axial and radial stretches (axial and radial stretches are 

assumed to be zero) and neglect of anisotropy leads to inaccurate approximation of 

the model to experimental data. 
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