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Abstract: The conclusion of my contribution on past EAN Conference was that an
attempt to identify low cycle fatigue (LCF) parameters of material from a shape of its
hysteresis loop failed due to invalidity of Massing’s rule on similarity of stress cyclic
curve with a shape of hysteresis loop. The contribution improves the classical way
of finding LCF parameters by complementing Basquin-Manson-Coffin equations by
Ramberg-Osgood equation in an identification process.
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1. Introduction

Behavior of materials under cyclic loading is described by Basquin [1] and Manson-
Coffin [2, 3] equations. The equations contain four independent material parameters
entering into relations between amplitudes and stresses, or plastic strains and fatigue
lives, respectively. The low cycle fatigue parameters are obtained by statistical
processing of data gathered during fatigue tests of a particular material. The classical
procedure of the processing can be found in standards (see [6, 7, 8] for instance) built
forty years ago. They are based on a manual recording of measured data into tables
and their processing by using office calculators.

At the present time, the situation has changed significantly, not only in
measurement possibilities, but also in processing means. The following parts of the
contribution deal with the state of the art of the problem.

2. Identification of LCF parameters

Fatigue properties of matarials in the elastic domain are expressed by equation [1]:

σa = σ′f (2Nf )b, (1)

in which σa is an amplitude of harmonic stress,
σ′f is a coefficient of cyclic fatigue strength,
Nf is a number of load cycles to failure, and
b is an exponent of cyclic fatigue stress.

The equation was found more than 100 years ago by Basquin [1]. More than 40
years later, professors Manson [2] and Coffin [3] discovered that the similar equation
held for plastic strain:

εap = ε′f (2N)c, (2)
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where εap is an amplitude of plastic strain,
ε′f is a coefficient of cyclic fatigue ductility, and
c is an exponent of cyclic fatigue ductility.

Equations (1) and (2) constitute a base for classical way of statistical processing
of measured data represented by a set of triples [σa, εap, Nf ]j , j = 1, 2, ..., J , where
J is a number of tested specimens. Both stress and strain amplitudes were measured
manually on drawings of hysteresis loops recorded during the tests by x-y plotter in
past. Nowadays, the processes σ(t) and ε(t) are digitized during the test and vectors
of both signals samples are stored in computer memory for later processing.

2.1. Classical method

Both equations can be transformed into linear form by application of decimal
logarithms to vectors of amplitudes and fatigue lives, all of the dimension J :

logσa = log σ′f + b log(2Nf )

log εap = log ε′f + c log(2Nf ),
(3)

or rewritten into the matrix form log (2Nf )1 1
...

...
log (2Nf )J 1


︸ ︷︷ ︸

A

×
[

b c
log σ′f log ε′f

]
︸ ︷︷ ︸

C

=

 logσa,1 log εap,1
...

...
logσa,J log εap,J


︸ ︷︷ ︸

B

. (4)

The system of equations (4) is over-determined, because the standards require
at least 8 specimen for one material test while there are only two pairs of unknowns
in C. In consequence of inaccuracies of the model (3) and measurements, there is
no exact solution of the system (4). Any matrix C of parameters generates a nonzero
matrix of residuals

R = AC −B . (5)
However, there might be such matrix C, for which a norm of the residual matrix R
becomes minimum. The common routine requires the Eucleidian norms of column
vectors rj , j = 1, 2, ..., J being minimum, what is equivalent with the condition

rTj rj =
∑
∀j

r2j −→ minimum, (6)

where the superscript T designates the matrix transposition. The last equation is a
base for the popular method of least squares, which is also used in the standard [8].
The solution corresponding to condition (6) may be obtained in the following steps:

• Multiply equation (4) byAT , the transposed matrix ofA, from left:
ATAC = ATB. (7)

• Calculate unknowns in matrix C:
C = (ATA)−1AT︸ ︷︷ ︸

A+

B. (8)



Matrix C yields the best approximation of equation (3). Matrix A+ is called
Moore-Penrose pseudoinverse of matrix A. As soon as the matrix C be known, the
parameters σ′f and ε′f are evaluated as

[σ′f , ε
′
f ] = 10 [log σ′

f , log ε
′
f ] . (9)

2.2. Improved method

Low cycle fatigue parameters [σ′f , b, ε
′
f , c] obtained by classical method fit good only

fatigue lives. Unfortunately, fatigue lives are the most problematic quantities. Are
laboratories accepting fatigue life as a number of cycles Nf at a total break down of
the specimen. The other use for Nf the number of cycles, for which the amplitude of
stress drops down by 25%. We decided to chose such a number of cyclesNf for which
stress amplitude becomes unstable. Till that moment, the specimen is in a steady state
with constant properties. As soon as amplitudes of stress start to vary, the specimen
has changed its properties. It would not be fair to evaluate material properties from an
object different from that at the beginning of the test.

Fatigue lives of specimens are not the only observed quantities during tests.
The recorded processes of stresses and strains enable to measure also turning points
of hysteresis loops. These points are laying on the cyclic stress-strain curve, which is
also a function of LCF parameters. It is obvious that after elimination of terms (2Nf )
from equations (1) and (2), the equation of Ramberg and Osgood is born:

σa = K ′ εap
n′
, (10)

where n′ =
b

c
is cyclic strain hardening exponent, and

K ′ =
σ′f

ε′f
n′ is cyclic stress hardening coefficient.

The formulae for n′ and K ′ contain the same unknown LCF parameters like
equations (1) and (2), what means that they may be included into the identification
process. As a result of this step, the new identified LCF parameters fit both fatigue
lines and cyclic stress-strain curve in the sense of minimum sum of squared residuals.

There is one weak point in the just described procedure. The Manson-Coffin
equation (2) is based on an amplitude of plastic strain, which is not measured. Only
total strain amplitude is controlled and measured during hard loading. It means that
εap should be evaluated as a difference between total and elastic strains

εap = εat − εae = εat −
σa
E′

. (11)

A new quantity, cyclic Young’s modulus E′, comes into account. There are following
questions: Is its value independent on specimen loading history? Is its static value
E constant during test? Experimental investigations reveal that slopes E′ of steady
hysteresis curves are different from the staticE obtained from tensile tests. The cyclic
modulus E′ used to be lower than the static E by tens of percents, what significantly
influences the resulting εap. Since the exact value of E′ is unknown, it may be
included among the unknown LCF parameters to be identified.



The sought parameters, to be identified, are
p = [σ′f , b, ε

′
f , c, E

′ ]T or [σ′f , b, ε
′
f , c ]T , (12)

if modulus E′ be known. The evaluation of residuals, preceded by an evaluation of n′

K ′ and εap in each iteration step, is performed in logarithmic domain just like in case
of the classical approach:

rσ = log(σ′f (2Nf )b)− logσa : Basquin
r
MC

= log(ε′f (2Nf )c)− log εap : Manson− Coffin

r
RO

= log(K ′ εap
n′

)− logσa : Romberg −Osgood

rε = log

((σa

K ′

)c/b
+
σa

E′

)
− log εat : ” εap + εae − εat ”

r
E

= (E′ > E) ∗ (E′ − E) : a penalty.

(13)

If there is n valid specimens for processing, the column vector of residuals used
by the optimization procedure is of dimension 4n+ 1 and in the form

r =
[
rTσ , r

T
MC

, rT
RO
, rTε , rE

]T
. (14)

Only the last element of vector r is a scalar. In fact, it is no residual, but a penalty
for the situation that E′ tries to overstep a value of the static modulus E during the
optimization. In consequence of it, the value of E′ reaches the value E at maximum.

It is obvious that all formulae but the first one are nonlinear in parameters, what
causes that a nonlinear solver should be used. The program LCF built in MATLAB
applies Levenberg-Marquardt algorithm in Fletcher’s version [13] for the purpose.
The program enables to read several kinds of data:

1. Tables of experimental data prepared manually with columns [σa, εat, Nf ].
2. Text files containing 3-column tables of relative sampling times t, loading forces
F (t) and absolute elongations ∆L(t) of an extensometer base.

3. Experiments and data processing

Low cycle fatigue experiments were performed in the year 2010 on specimens made
out of carbon steel ČSN 41 1523.1 and documented in the report [11]. The experiment
settings and measured fatigue lives were gathered in Table 1 taken from protocol [11],
where the experiment is described. A processing of the measured data is presented in
an extended standard form [8] in report [12].

Table 1. Data of low cycle fatigue tests of ČSN 41 1523.1

Spec.# σa [MPa] εat [-] Nf [-]

1 426 0.012058 540

2 421 0.011288 860

3 230 0.001892 76000

4 282 0.003789 14171

5 393 0.00785973 1443

7 246 0.00212822 60560

9 434 0.01172978 520



The program LCF can process several kinds of data into material LCF
parameters by fitting measured fatigue lives as described in the following subsections.

3.1. Tabular approach

The simplest way of measured data processing consists in the classical method dealt
in subsection 2.1 applied to data from Table 1.The found parameters can be taken as
a good initial approximation for the nonlinear regression under subsection 2.2. If the
measured data show low scatter, the resulting graphs are almost identical as seen in
Figure 1 and Figure 2.

Fig. 1. Cyclic stress-strain curve Fig. 2. εap-Nf curve

The initial estimate of LCF parameters for nonlinear regression need not be only
evaluated by linear regression. They may be estimated also under empirical formulae,
say by Bäumler and Seeger (B&S), presented in [14]. The resulting graphs are shown
in Figure 3 and Figure 4.

Fig. 3. Cyclic stress-strain curve Fig. 4. εap-Nf curve

Another attempt for estimation of LCF parameters has been made with
parameters taken from the unsuccessful identification from shapes of hysteresis loops
discussed in EAN 2011 [10]. It is obvious from the Figure 5 that new cyclic stress-
strain curve almost coincides with the old one, in spite of completely different
parameters. This phenomenon has been caused by the fact that points of cyclic curves
also belong to hysteresis loops from which the initial parameters were identified.
However, serious differences are evident in Figure 6.



Fig. 5. Cyclic stress-strain curve Fig. 6. εap-Nf curve

In all examples, modulus E′ obtained from the slopes of hysteresis loops was
used. As a known parameter, E′ did not enter the identification. If the static modulus
E be accepted, the identified LCF parameters would be different. Experiment in
identification revealed that the identified value of E′ would often be greater than that
of static E what is unrealistic. This was a reason why the vector of residuals was
complemented by the penalty described above.

All estimated and identified values of the LCF parameters from the upper
examples are gathered in Table 2. The second column marked as ’LR’ belongs to the
classical (linear regression) method that respects only Basquin and Manson-Coffin
equations. When this result or any other set of parameters were used as an initial
estimate, the nonlinear regression respecting also Romberg-Osgood equation (10)
returned practically equal results as seen in columns marked by ’NLR’. There are
no significant differences between lines for LR and NLR identification in Figures 1
and 2 in spite of almost 5% differences among coefficients.

Table 2. A survey of estimated and optimized LCF parameters, E′ = 147518 [MPa]

par LR NLR B&S B&S NLR [10] [10] NLR

σ′
f 1052.90 1099.52 802.50 1099.52 933.20 1099.53

b -0.1263 -0.1315 -0.0870 -0.1315 -0.1087 -0.1315

ε′f 0.8735 0.8657 0.5438 0.8657 0.4104 0.8657

c -0.6402 -0.6391 -0.5800 -0.6391 -0.5370 -0.6391

n′ 0.1973 0.2057 0.1500 0.2057 0.2024 0.2057

K′ 1081.37 1132.63 879.28 1132.63 1117.56 1132.63

3.2. Sampled signals approach

There are big differences between ways of measurement in past and nowadays.
While the old measurements have generated plots of hysteresis loops that have been
processed manually off line, up to date methods sample signals of loading forces and
deformations and store corresponding time series of samples in computer memories.
They are later evaluated into vectors of samples of stress σ(kT ) and strain ε(kT ),
respectively, where k is an order number of the sample and T a sampling period.



Fig. 7. Maximum amplitude error

The sampling frequency fs = 1/T should
be chosen carefully in order that extremes of
signals were found with an error not bigger
than an permitted level. The well known
criterion of Shanon-Kotelnikov declares that
any signal can be reconstructed from its
samples, provided a sampling frequency be
at least twice a signal frequency. This rule
may be used for long signals. If only
one cycle is at disposal, there might be big
differences between maximum sample value
and a real cycle amplitude. Figure 7 shows the

maximum error attainable under a relative sampling frequency. The error of about one
percent is gained for sampling frequencies more than 20 times the signal frequency.

Drawbacks of the classic method under the standards [6]-[8] are, that only a
single hysteresis loop is taken from about a halve of the total fatigue life under current
test for en evaluation of LCF parameters. Any measurement deviation may influence
results unpredictably. The similar effect can have the badly defined fatigue life Nf . In
order to diminish those errors, new rules have been accepted:

• The total length of a recorded time series is reduced to a steady part. the first
cycles do not come into evaluations but the number of cycles. As soon as the
stress amplitude becomes instable, the rest of the time series is discarded.

• The selected steady interval of the time series is split into small subintervals for
evaluation of stress and strain amplitudes.

• The average amplitudes are then evaluated and put into the table for the later
evaluation of LCF parameters by any method used in section 2.

Fig. 8. Loading and processing of specimen #4



Figure 8 displays data measured during a test of specimen #4, all hysteresis loops,
those loops from a selected steady interval and evaluated stress and strain amplitudes.

4. Conclusions

The contribution introduced an alternative way of identification of material LCF
parameters, if compared to the standard one. It promises to be better and more reliable
than the current methods. The procedures are based both on linear and nonlinear
regression. The linear regression is formulated in a new way and should give just
the same results as the standard method. The nonlinear regression is used when
both Basquin-Manson-Coffin equations and Romberg-Osgood equations should be
fulfilled.

Acknowledgements

The contribution has been prepared in the framework of the institutional support for
the long-time conception development of the research institutions provided by the
Ministry of Industry and Trade of the Czech Republic.

References

[1] Basquin O.H., "The Exponential Law of Endurance Tests" in Proceedings of American
Society for Testing and Materials, ASTEA, Vol 10, pp. 625-630, (1910)

[2] Manson S.S., "Behavior of Materials under Conditions of Thermal Stress", Heat Transfer,
Symp. University of Michigan, Engineering Research Inst., (1953)

[3] Coffin Jr. L.F., "A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal",
Transactions ASME, Vol 76, pp. 931-950 (1954)

[4] Balda M., "LMFnlsq – Solution of nonlinear least squares", MathWorks, File Exchange
www.mathworks.com/matlabcentral/fileexchange/17534, (2007)

[5] Jozefy R., "Methods for measurements and statistical processing of low cycle fatigue tests
(In Czech)", VYZ 1316/2010, ŠKODA RESEARCH Ltd., Plzeň, pp. 1-31, (2010)
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