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Abstract. This paper presents new design of the structural specimen for plane stress analysis. 
Requirement was that the specimen is loaded by universal tensile testing machine without any 
special equipment. Specimen was analyzed using finite element method in ANSYS 
Workbench software. Finite element method was also used for simulation of strain gauge 
measurement to determine principal stresses, equivalent von Mises stress and orientation of 
the principal axes in the center of specimen. Finally, experimental stress analysis using strain 
gauges was performed on real specimen. Results from experimental measurements and 
numerical simulations were compared.  

Introduction 

Plane stress is a special case of general three-dimensional stress state at a point of structure 
under mechanical loading. Plane stress is typical in many engineering problems where the 
stresses are induced in a thin plate or on the free surface of a structural element, such as the 
surfaces of thin-walled pressure vessels under external or internal pressure, the free surfaces 
of shafts in torsion, beams under transverse load, airplane fuselage and wings, car bodies etc. 
[1-3]. 

A point of thin-walled structure can be represented as a rectangular planar element in the x-
y plane. This element in the state of plane stress has three nonzero stress components: two 
normal stresses σx, σy and one shear stress τxy (from static equilibrium τxy = τyx) as shown in 
Fig. 1. In three-dimensional state of stress, there are other three stress components σz, τyz, τzx 
in perpendicular direction to the x-y plane (z direction), but these ones are zero in the case of 
plane stress.  

Stress components σx, σy and τxy vary with the angle ϕ of rotation of the element into new 
coordinate system. In new coordinate system, there are maximum σ1 and minimum σ2 normal 
stresses called principal stresses and zero shear stress in the element, see Fig. 1. Principal 
stresses lie in principal directions. Maximum shear stress τmax occurs when the element is 
rotated from principal directions about angle 45°, see Fig. 1. For this orientation of element, 
there are except maximum shear stress τmax also two nonzero normal stresses with the same 
average stress value σave. 

 



 

 
Fig. 1. Element in the state of plane stress: 

a) x-y coordinate system, b) principal directions, c) direction of maximum shear stress. 
 

In general, there are different values of normal and shear stresses in any coordinate system 
of the element. This transformation of stress in order to angle ϕ describes Mohr’s circle. In 
Mohr’s circle the horizontal axis represents normal stress and vertical axis represents shear 
stress in the element. Normal and shear stresses in current coordinate system of the element 
are represented by a point on a circle. Angle ϕ is twice in the center of circle, see Fig. 2.       
 

 
Fig. 2. Mohr’s circle for plane stress. 

 
If all three stress components for any coordinate system are known, then the principal 

stresses σ1,2, maximum shear stress τmax, average stress σave and angle ϕ with respect to 
principal directions are defined as follows [1-3]: 
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If principal stresses are known or calculated from Eq. 1, the von Mises criterion σMises 

(ductile materials) or maximum normal stress criterion σmax (brittle materials) can be used to 
compare plane stress with uniaxial yield stress σY and ultimate tensile strength σTS [1,2]: 
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Experimental determination of mechanical stresses is performed by measuring of the 

strains. In the state of plane stress there are stress components only in x-y plane but strains are 



 
in all three directions. Normal stresses produce normal strains εx, εy, εz (εz is result of 
Poisson’s ratio effect) and shear stress produces shear strain γxy in x-y plane. In the region of 
elastic deformation we assume the linear strain-stress relationship defined by generalized 
Hooke’s law. Hooke’s law for plane stress is given by the equation (εz is not considered) [1-
3]: 
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where E is Young’s modulus and ν is Poisson’s ratio. 
The strains on a surface of body are usually most conveniently measured by means of 

electric-resistance strain gauges. The simplest form of such a gauge is a short length of wire 
insulated from and glued to the surface. When stretching occurs the resistance of the wire is 
increased, and the strain can thus be measured electrically. Single strain gauge is capable only 
of measuring the extensional strain in the direction that the gauge is oriented. Therefore, if the 
principal directions are known the gauges are mounted in these directions (principal strains ε1 
and ε2 are measured) and principal stresses can be calculated as follows [1]: 
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When the principal directions are not known in advance, three measurements are needed. 

In this case, to determine the state of plane stress it is necessary measure not only two 
extensional strains, but also the shear strain, with respect to some given x-y coordinate system. 
However, there is not direct way to measure the shear strain. [1]  

The solution of this problem is to make three independent measurements of extensional 
strains at a point on the surface of structure. The most obvious approach is to place three 
strain gauges together in a rosette with each gauge oriented in a different direction and with 
all of them located as close together as possible to approximate a measurement at a point [1]. 
Strain gauges in rosette are typically oriented at fixed angle 45° (rectangular rosette) or 60° 
(delta rosette) with respect to each other.  

Fig. 3 shows measurement with rectangular strain gauge rosette. Gauge A is rotated 
relative to the principal axis 1 of the angle ϕ. Directions of gauges A and C represents x-y 
coordinate system of the element.  

 
Fig. 3. Measurement with rectangular strain gauge rosette. 

 
From measured strains εA, εB, εC we can determine strain components for element in x-y 
coordinate system [1]: 
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Now, it is possible calculate stresses in the element in x-y coordinate system using generalized 
Hooke’s law, Eq. 3. Principal stresses σ1,2, maximum shear stress τmax and angle ϕ between 
principal directions and x-y coordinate system are then calculated from Eq. 1. The von Mises 
stress is calculated from Eq.2. 

Plane stress testing methods 

Plane stress is tested using various methods. The most common test is biaxial tensile test of 
thin cruciform specimen as shown in Fig. 4a. Arms of cruciform specimen are loaded in 
tension. There are principal axes in the directions of applied loads in the center of specimen. 
Testing machines for this test require combination of two or four individual force actuators as 
shown in Fig. 4b. It is also possible use universal tensile testing machine with special 
pantograph device, see Fig. 4c. 
 

 
Fig. 4. Biaxial tensile test: a) cruciform specimen, b) tension in two directions by action of 

four actuators [4,5], c) pantograph mechanism for tensile testing machine [6,7]. 
  
Arcan et al. [8] proposed a biaxial fixture, commonly known as the Arcan fixture, to 

produce biaxial states of stress. Specimen with butterfly geometry is usually used, see Fig. 5a. 
The Arcan fixture can be used to apply both shear and axial forces to the test specimen, see 
Fig. 5b [9].  

 

 
Fig. 5. Arcan fixture [10]: a) butterfly specimen, b) biaxial states of stress. 

 
Different type of specimen is thin tubular specimen loaded by axial tension force and 

inertial pressure as shown Fig. 6a. Plane stress state is enforced in the shell of the tubular 
specimen. Device for testing this kind of specimen requires additional hydraulic pump or 
pneumatic compressor, Fig. 6b. 



 

 
Fig. 6. Testing of tubular specimen: a) tubular specimen, 
b) servo-controlled tube-bulging testing machine [11]. 

 
All these testing methods are quite complicated or expensive so our target was design new 

specimen for plane stress analysis which will be testing by using just universal tensile test 
machine. Software ANSYS Workbench was used for design the specimen shape. 
Experimental measurement using strain gages was consecutively performed.   

New specimen for plane stress investigation 

In Fig. 7, there is a design of new specimen for testing plane stress state. This specimen 
can be tested using universal tensile testing machine without any special equipment. Vertical 
arm is loaded in tension and we assumed that due to specimen design the horizontal arm is 
loaded in compression. In the center of specimen the principal directions should be in the 
vertical and horizontal directions as shown in Fig. 7. This assumption was verified by finite 
element analysis. 

Parameters for plane stress test: 
• shape and dimensions (in millimeters) of the specimen are shown in Fig. 7; 
• thickness  of the specimen: t = 1 mm; 
• material: aluminum (E = 70 GPa, ν = 0.33); 
• applied force: F = 200, 400, 600 N. 

 
Fig. 7. Shape of the specimen. 

 
Static structural finite element analysis (FEA) was performed in software ANSYS 

Workbench [12]. The specimen was modeled as surface body. Type of structural analysis was 
plane stress with thickness. The main target of this analysis was determined whether the 
principal axes in the center of specimen are in vertical and horizontal directions. This 
assumption was confirmed from the vector plot of deformation and principal directions in the 
center of specimen, see Fig. 8. 
 



 

 
Fig. 8. Vector plot of deformation and principal directions in the center of specimen. 

 
Results of deformation and state of stress for the entire specimen and for a point in the 

specimen center are in Fig. 9 (load case F = 400 N). Results for all load cases are in Tab. 1.  
 

Tab. 1. Results from static structural FEA. 
F σ1 σ2 τmax σMises 

[N] [MPa] [MPa] [MPa] [MPa] 
200 5.0 -2.0 4.0 7.1 
400 11.7 -4.2 7.9 14.2 
600 17.5 -6.3 11.9 21.3 

 

 
Fig. 9. Plot results for load case F = 400 N. 

Finite element simulation of strain gauge measurement 

Rectangular strain gauge rosette was modeled in the center of specimen to determine three 
individual extensional strains. Orientation of the rosette is shown in Fig. 10. Gauge A is 
rotated from principal axis 2 about angle ϕ = –20°. Specimen was modeled as three-
dimensional body and each gauge was modeled as individual plane element with own local 
coordinate system. Results of this simulation were extensional strains of individual gauges εA, 
εB, εC (X axis of local coordinate system, see Fig. 10). Stress quantities were calculated from 
the strain results using Eq. 1-3 and 5. All results are presented in Tab. 2.  
 



 

 
Fig. 10. Orientation of the strain gauges. 

 
Tab. 2. Results from simulation of strain gauge measurement. 

F εA εB εC σx σy τxy σ1 σ2 τmax σMises ϕ 
[N] [µm/m] [µm/m] [µm/m] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [°] 
200 -39.6 65.7 74.9 -1.2 4.9 2.5 5.8 -2.1 3.9 7.1 -20 
400 -79.1 131.4 149.8 -2.3 9.7 5.1 11.6 -4.2 7.9 14.1 -20 
600 -118.7 197.1 224.7 -3.5 14.6 7.6 17.3 -6.3 11.8 21.2 -20 

Experimental strain gauge measurement 

Real specimen was subjected to testing. Three gauges were attached on the specimen. 
Orientation of gauges is the same as in previous finite element simulation, see Fig. 11. 
Measured strains and calculated stresses are in Tab. 3. 

Devices used for experimental measurements: universal tensile testing machine, load cell, 
strain gauges, measuring amplifier, PC with software to acquisition and visualization of 
measuring data. 

 
Tab. 3. Results from experimental measurement. 

F εA εB εC σx σy τxy σ1 σ2 τmax σMises ϕ 
[N] [µm/m] [µm/m] [µm/m] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [°] 
200 -40.4 61.6 68.6 -1.4 4.3 2.5 5.3 -2.3 3.8 6.8 -20.5 
400 -80.8 123.2 137.2 -2.8 8.7 5.0 10.6 -4.7 7.6 13.5 -20.5 
600 -121.2 184.8 205.8 -4.2 13.0 7.5 15.8 -7.0 11.4 20.3 -20.5 

 

 
Fig. 11. Real specimen with strain gauges. 

Conclusion 

New specimen for plane stress testing was designed. Finite element method was used for 
analysis the state of stress in the center of specimen. Finite element simulation of strain gauge 
measurement was also performed. Finally experimental measurement was done. Results from 
simulations are compared with experimental results in Tab. 4 and Tab. 5. Percentage errors of 



 
both finite element analyses are less than 15 % in view of the measurements. Von Mises stress 
errors are even smaller than 6 %. Results differences are acceptable and we can consider that 
shape of the specimen is suitable for analysis of plane stress state. Advantage of this specimen 
is that specimen can be tested by using universal tensile testing machine without any special 
equipment. Different stress values can be achieved by changing of the specimen dimensions.  

 
Tab. 4. Comparison of static structural FEA and measurements. 

F [N] 200 400 600 
  FEA Measured ∆ [%] FEA Measured ∆ [%] FEA Measured ∆ [%] 

σ1 [MPa] 5.0 5.3 5.7 11.7 10.6 -10.4 17.5 15.8 -10.8 
σ2 [MPa] -2.0 -2.3 13.0 -4.2 -4.7 10.6 -6.3 -7.0 10.0 

τmax [MPa] 4.0 3.8 -5.3 7.9 7.6 -3.9 11.9 11.4 -4.4 
σMises [MPa] 7.1 6.8 4.4 14.2 13.5 -5.2 21.3 20.3 -4.9 

 
Tab. 5. Comparison of strain gauge simulations (GFEA) and measurements. 

F [N] 200 400 600 
  GFEA Measured ∆ [%] GFEA Measured ∆ [%] GFEA Measured ∆ [%] 

σ1 [MPa] 5.8 5.3 -9.4 11.6 10.6 -9.4 17.3 15.8 -9.5 
σ2 [MPa] -2.1 -2.3 8.7 -4.2 -4.7 10.6 -6.3 -7.0 10.0 

τmax [MPa] 3.9 3.8 -2.6 7.9 7.6 -3.9 11.8 11.4 -3.5 
σMises [MPa] 7.1 6.8 4.4 14.1 13.5 -4.4 21.2 20.3 -4.4 

ϕ [°] -20 -20.5 2.4 -20 -20.5 2.4 -20 -20.5 2.4 
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