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Abstract. When determining stress states by the hole-drilling method, it is necessary to take 

into account the experiment performance accuracy. The drilled holes eccentricity appears as a 

frequent imperfection, which influences essentially the reliability of their stress state 

assessment. This paper presents the hole-drilling measurement method corresponding to the E 

837 standard method, but, at the same time, it is more universal. This method transforms the 

full stress tensor of the drilled hole position by the regression coefficients and describes the 

state of strains released in the hole surrounding, based on the hole center distance and its depth. 

The regress coefficients are not defined in the method concretely for the rosette but they are 

universal both for the isotropic Hooke’s materials and for the other measuring elements. The 

method defines the way for the processing of the released strains measured with a defined 

measuring element and involves naturally the influence of the drilled hole eccentricity and so 

it is possible, in the hole-drilling method, to apply measuring elements more simply, without 

determining their specified regression coefficients. Modification of Decomposition theory for 

semiconductor hole drilling rosette with a greater sensitivity is advantageous. 

Introduction  

The experimental semi-destructive hole drilling principle for the stress state identification is 

based on the assumption, that the free surface is one of the principal planes and the stress state 

in the surface layer thus can be only a uniaxial or plane one. The impair of the inner force 

equilibrium of a strained structure by drilling of the relatively small cylindrical hole 

perpendicularly to the surface induces a change of a strain state in its close vicinity. These 

released strain changes are calibrated with respect to the uniaxial stress-state existing originally 

in the drilled hole axis. For isotropic Hooke's materials, the released strains measured can be 

formulated by using the superposition of the two principal stresses of the drilled surface layer 

and so the original stress-state to identify [2]. The theory of this experimental principle take 

advantage of the analytical Kirsch’s stress-state solution of a thin plate with a hole drilled 

through perpendicularly and uniaxially loaded by principal stress [1]. The thin plate in Cartesian 

coordinates x, y ,z under the loading by principal stress x is depicted in Fig. 1. On the surface 

of this plate are defined polar coordinates R, , stresses r, θ,  and strains r, θ,  , z . We 

define the relative radius r = R/R0  1 in a radius R direction according to [1, 2, 3]. If the hole 

of the radius R0 has not been drilled yet, which is loaded by principal stress x, is loaded by 

stresses    ,,r in planes defined by r and  polar coordinates and marked by indices of their 

normal lines r, θ. The stresses are determined in (1) from an elementary equilibrium. The 

Kirsch’s equations (2) describe the state of plane strain in the vicinity of the through hole of 



 

radius R0 (Fig. 1). The change of straining induced by the hole drilling in comparison to the 

original state is defined by the difference of corresponding components of (1) and (2) in (3). In 

comparison with (1), the (2) include terms dependent on the drilled hole, which are left in the 

(3) that are otherwise of a character similar to (1) and (2). If E stands for Young’s modulus and 

 for Poisson’s ratio, the changes of plane stresses r, θ,  can be used for any isotropic 

material for a calculation of changes related to strains r, θ,  and z (see Fig. 1) in a point on 

the plate using the Hooke’s law (4) and further modified to (5). 

 

 
 
 
 

                                                      (1) 
 

                                                       
 
 
 
                                      (2) 
 
 

 
 
   
 
                                      (3) 
 

 

The Hole drilling strain-gage method used for the residual stress state identification is 

 

Fig. 1. Components of the stress tensor and strain tensor in the drilled hole vicinity. 
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currently standardized by the E 837 international standard [2]. This hole drilling method theory 

is based on two parameters adjusted for particular designs of drilling rosettes and requires very 

accurate the experimental hole drilling. It is valid for isotropic Hooke’s materials with a known 

strain response to the drilling of the hole. The response is measured by strain gauges assembled 

to a drilling rosette. The response function is similar to strains identified in the Kirsch’s solution 

of the thin plate with a hole as described in (4) and (5). 

 

A simplification of the goniometric function (5) describing a response of an ideal strain gauge 

placed with a deviation of angle  from a direction related to the principal stress x is 

standardized by E 837 standard, used (see (6)). Standardized theory E 837 defines the measured 

relaxed strain (6) as a signal of a complete hole drilling rosette strain gauges placed in the ideal 

position. Standard constant variables EaA 2)1(   and EbB 2  related to the particular 

design of the drilling rosette are used within the superposition of wanted principal stresses x 

and y. Both constants ba ,  are tabulated in E 837 standard for particular types of drilling 

rosettes. The measurement properties of the rosettes during the hole drilling according to are 

considerably dependent on the accuracy of compliance with conditions of the experiment. 

Precision drilling experiment, it is difficult to observe in terms of practice. A frequent 

imperfections of the drill holes is eccentricity to their ideal position, which standardized theory 

E 837 requires to measuring hole drilling rosette. Informations that are needed to transform the 

signals measuring elements hole drilling rosette   from (6) with respect to their actual position 

relative to the drilling hole standard method considered. Since the measurement of released 

deformation   is not objective due to the eccentricity of drill hole, so the algorithm 

standardized method causes errors in the state of stress identification.  
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Computing Model of Regression Coefficients  

Then the hole drilling experiment as formulated by E 837 standard cannot be used for any 

more complex determination of the strain state in the vicinity of the drilled hole, which would 

be necessary for any eventual improve corrections. Therefore, this paper on the elimination of 

the influence of the drilled hole eccentricity on the stress evaluation by the drilling method is 

actual [4, 5, 6, 7 ].  

When derived Decomposition Theory hole drilling method [4, 8, 9] was assume that the 

measuring element positions are defined with both the drilling rosette and the measured 

eccentricity of the hole drilled. There was used decomposition and subsequent discretization 

measuring gauge rosettes to measure elements of gauges. The released strains can be locally 

transformed in the measured direction and the measuring strain-gauge responses can be 

objectively formulated. The regression model (7) released deformations in the vicinity of the 

experimental drill hole is formed on the analogy with the plane Kirch theory (1-5). The 

regression coefficients are independent of both the isotropic Hooke’s materials and the 

structures of specified measuring elements, i.e., they are universal (general).  

 

The five regression coefficients 65421 ,,,, ccccc  of the regularized model can be obtained by 

using the least squares method in (8), which minimizes the residual errors between the 

analytical method (  ,,r ) and numerical method (  ,,r  - numerical method with using 

a numerical simulation of the experiment drilling and measured relaxed strains) in the 

comparative points i of the numerical model of the thin plate from Fig. 1. This task can be 

transformed by the minimization of three independent functionals F1, F2 and F3, yielding the 
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five linear equation system in the form of (9). The conditions for the minimization of the 

functionals F1, F2 and F3 can be separated into the three independent linear equation systems 

as stated in (10).  

 

Elimination of Drilled Hole Eccentricity Effects  

We expect location measuring via basic Cartesian coordinates yx , (see Fig. 2). The real 

position of the drilling hole centre O  can deviate from the ideal centric position )0, 0(  yxO  

to a new position ),(
00

yyxxO  , set with eccentricity components x0, y0, where are 

implemented parallel Cartesian coordinates yx, . The semiconductor strain gauge i has the 

shape of a thin rod, because it is modeled in contact with the surface geometry as a line segment 

divided into several measuring points j. The strain gauge i position is defined by the its origin 

iW , from which are defined local winding Cartesian coordinates s, g and also by the angle ψi 

from the axis xx or    to the winding orientation axis g.  The direction of the local winding axis 

g is here identical with the measuring orientation of the surface strain j. A set of j winding 

points marked Mj is defined by sj, gj coordinates of the strain gauge winding. Due to 

implementation hole drilling principle theory are here applied polar coordinates iiR ,  for the 

expression geometry, more precisely polar coordinates iir , , where the radius around the 

drilling hole is formulated by the radius ratio r = R/R0. The position of the origin iW of the i-th 

strain gauge is defined in relation to the real center of the drilled hole shifted by the eccentricity 

components x0, y0 from the ideal position by Cartesian coordinates xi, yi and polar coordinates 

iiR , , or iir ,  by the formula (11). 
 

 
 
 

                 (11) 

 

Mj point on the centerline of the winding of strain gauge i then has coordinates xj, yj by the 

(12), derived from Cartesian coordinates xi, yi and local coordinates s, g of the i-th strain gauge. 
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                    Fig. 2. Semiconductor strain gauge model and specimens. 

The polar coordinates Rj, j, or rj, j of the Mj point in (13) are set from (12) in analogy with 

(11). The angle j of g axis from   axis is described by the (14) in the local coordinate system 

,r  (Fig. 2), which here also represents the direction of the dominant part of the strain gauge i 

winding. 
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transformed to the strain components. If the isotropic Hooke’s material is evaluated, then the 

strain components can be computed by (15) in analogy to (5). The state of strain on planes 

perpendicular to the surface can be set by an angular transformation, where the use of the first 

three components r,  ,  in (15) is sufficient, because of the principal strain z does not have 

any effect on it. Figure 2 defines the coordinates sj, gj of the point Mj at axes s, g. The strain j 

tangential to the winding direction at the point Mj, or more precisely aligned to the direction of 

the axis g, is derived from r,  , strains according to the transformation (16) for an acute angle 

φj. Subsequently it is expressed using goniometric functions of a double angle 2φj. The latter 

statement is a consequence of the fact that strain gages primarily measure along the winding 

tangent. We expect the direction of the principal stress x given by the angular parameter   

measured from either x or x  axis (see Fig. 2). For an examined point Mj of the i-th strain gauge 

winding is its angular position to principal stress x determined by the difference of angles 

j  . The angular position of this Mj point is shifted by a right angle 2  j  in relation to 

the other principal stress y. 
 

 

 

 

(15) 

 

 

 

(16) 

 

 
 

The bonded strain gauge reads the strain field of the contact surface. Therefore, the 

deformation under the strain-gauge, at a specified section of its winding, is proportional to the 

contribution of this winding section into the total signal measured with the strain-gauge. We set 

a unit vector in the direction of the principal stress x under the   in the first case and in the 

direction of the stress y under angle 2   (Fig. 2). Relieved strain j  is multiplied with a 

unit dummy load vector introduced in the direction of principal stress and transformed to the 

winding direction using the strains  ,,r of the point j (see (16)). The both considered 

sensitivities ti of the i-th strain gauge to the strains relieved during the drilling can be formulated 

by average strain in the direction of the strain gauge winding according to (17). The curvilinear 

integral of strain along the winding length wi has an argument including strain j . The angle φj 

from (14) is function of the particular position of the point Mj on the winding and is not a 

function of the parameter  . 
 

 
              (17) 
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The strains  ,,, rj  normed by a unit vector are goniometric functions (see (11)-(14)) of 

the particular position of the point Mj on the winding and of parameter   defining the position 

of the unit vector introduced to the direction of the principal stress. The system of at least three 
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independent (18) of i-th strain gauge signals i read in the vicinity of the drilled hole for 

unknown principal stresses x, y and the angle of their position  (system is similar to (6)). 

A superposition including effects of both principal stresses is done. The relative radius 

rj = j / R0 in Mj integration point on the strain gauge winding is identified. The integrands of 

(17) are set in (19) and (20) by a substitution r,  ,  from (15) to (16). The equivalences 

 2cos)2(2cos   and  2sin)2(2sin   is used (20). 
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The constants j

kd  (k=1,…6) independent from Poisson’s ratio of the drilled material but 

dependent on the position of the particular Mj point of the i-th strain gauge are introduced into 

(19) and (20). The integrands in (19) and (20) of two (17) are by the help of (21) concentrated 

to j

kd  constants of the Mj point in (22).  
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In (23) is (22) substituted into (17) and the E, material constants and the goniometric angle 

functions   can be removed from the curvilinear integrals based only on the strain gauge 
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winding position. The curvilinear integrals in strain gage sensitivities (23) correspond in 

sensitivities to constants i

kD  (k=1,…6) of the strain gauge i and they can be realized numerically 

in (24). This sums converge obviously with the increasing density of discrete calculation points 

to the real value of the relevant curvilinear integral. The (18) of a signal i of the strain gauge i 

can be rewritten to a more specific (25) using both its ti sensitivities from (23) and (24). The 

multiple terms in the parenthesis by principal stress x, y are further united into )(K  

functional terms. A typical example of a use can be started from three signals 1, 2 and 3 of 

three independent strain gauges of the drilling rosette. The signals form a strain response vector 

relieved after drilling the hole. 
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The system of three non-linear equations (26) can be formulated in analogy to (18) and (25). 

The first two equations serve for determination of unknown principal stresses x and y as a 

functions of 1 and 2 strain signals and of an unknown angular parameter   defining the 

position of the principal stress x according to (27). 
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The substitution of (28) for 3 to the third (26) allows the computation of   parameter from 

(29), while the last substitution of   back to (27) leads to x and y principal stresses. 
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