531 CONFERENCE ON EXPERIMENTAL STRESS ANALYSIS pp. 3640
Cesky Krumlov, Czech Republic, June 1-4, 2015

Identification of Residual Stress and Structure Properties in
Surface and Subsurface Layers of Austenitic Steel Designed for
Nuclear Energetics

A. Czan'*, M. Sajgalik !, A. Martikan !, V. Kuzdak !

1 University of Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia

* andrej.czan@fstroj.uniza.sk

Abstract: The article deals with non-destructive measuring and evaluation of residual stresses and
chemical properties of stainless steel sample and its possibility to affect functional properties of the
material. This measuring method also determines orientation of residual stress, so it is possible to
identify absolute values of shear and normal stress with high accuracy. Monitoring of residual stresses
in components can be useful in predicting damage incidences caused by workload over lifetime of
components.
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1 Introduction

Residual stresses are an integral part of manufactured workpieces, whether they are introduced deliberately,
as a part of the design, as a by-product of a process carried out during the manufacturing process, or are present
as the product of the component’s service history [1-3]. For full classification, it should be noted that residual
stresses are called sometimes as technological stresses, because they arise from the action of technological
processes during the producing of parts. Direction of residual stress (tension or compression) depends on the
kind of deformation [4, 5].

2 Principles of Measurement of Residual Stress by X-Ray Diffraction

From the theory of elasticity the relationship between residual stress (o) and strain (¢) on the sample surface
under plane stress is given by the Bragg equation, A = 2d sin 6, relating incident X-ray wavelength (), lattice
inter-planar spacing (d) and diffraction angle () (Fig. 1).The direction of maximum residual stress, that can
be tensile or compressive, is assumed to occur in the cutting or grinding direction during most machining
operations [6,7].
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Fig. 1: Principle of measuring of residual stress by X-ray diffractometry based on Brag’s Law.
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Tab. 1: Surface layers stress and austenite percentage values.

Normal Stress

No. [MPa] Shear stress [MPa] Austenite [%]
1 +109.1 £47.3 68.11 +25.16 95.45
2 +128 +18.79 26.86 +12.6 95.12
3 +93.6 £13.8 45.56 +24.99 96.49

3 Experiment Conditions

Experiment was performed on stainless steel 08CHI18N10T. This steel is a typical 18Cr-10Ni austenitic
stainless steel, equivalent to AISI 321 and X6CrNiTil8-10.

Sample for the experiment was machined by turning technology on CNC turning centre. By the recom-
mendation of manufacturer of cutting tools, cutting speed v, was set to 150 mm.min~! for both roughing and
finishing, depth of cut a;,, = 3 mm for roughing and 1.2 mm for finishing, feed rate f = 0.35 for roughing and
0.17 for finishing. The measuring of residual normal and shear stress and measuring of austenite percentage was
performed with Proto XRD diffractometer, using WINXRD 2.0 software, on three points around the machined
diameter of the sample surface.

The residual stress field at a point, assuming a condition of plane stress, can be described by the minimum
and maximum normal principal residual stresses, the maximum shear stress, and the orientation of the maxi-
mum stress relative to some reference direction. The minimum stress is always perpendicular to the maximum.
The maximum and minimum normal residual stresses and their orientation relative to a reference direction can
be calculated along with the maximum shear stress using Mohr’s circle for stress if the stress o, is determined
for three different values of ¢ [8—10].

4 Experimental Results

Measuring procedure of identifying austenite percentage using X-ray diffraction was based on average peak
method. This method uses four individual peaks to determine austenite amount. For each peak is calculated
R-value and intensity

Graphic output and values of measured stress and austenite percentage are shown in Fig. 2 - 3 and Tab. 1.
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Fig. 2: Graphic output of experimental stress measuring No.1.

5 Discussion and Conclusion

Due that machining brings stress to machined material, both normal stress and shear stress, it is necessary
to be able to measure its value and orientation. X-ray diffractometry offers the opportunity to determine these
properties of machined or differently technologically treated material to predict deterioration of components.
This measuring technology is non-destructive, so it can be used in wide area of applications [11, 12].

Measurement on sample of machined austenitic steel determined normal stress values from +93.6 MPa to
+128 MPa (Fig. 4). That means the surface of the sample is under tensile stress and there is high probability of
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Fig. 3: Graphic output of experimental austenite percentage measuring No. 1.

emerging primary micro-cracks in surface layers. Metallographic evaluation of the material samples confirmed
existence of micro-cracks in surface layers (Fig. 5).
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Fig. 4: Measured normal and shear stress values.

Fig. 5: Formation of micro-cracks in surface layers — light metallography.

In this case, high values of shear stress supports the crack spread and can lead to secondary trans-crystal
crack into subsurface layers of the material (Fig. 6). Spread of micro-cracks is accelerated also by presence of
working load of component and chemical influence of work environment (pitting corrosion).

Measured values of austenite percentage in surface layer ranged from 95.12 % to 96.49 % what means that
the surface layers of material consist small amount of another phases in addition to austenite.

The experiment proved that X-ray diffraction can be essential non-destructive method for identifying prop-
erties of used material treatment and predicting potential component deterioration. Results of the experiment
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Fig. 6: Surface detection and microstructure of the crack spread across base material — SEM microscopy.

identified that chosen cutting parameters are unsuitable for machining stainless steel 08CH18N10T and is nec-
essary to continue in technological research to bring comprehensive stress into the material and to lower the
shear stress.
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