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Abstract: An analytical structural limit state assessment needs a better knowledge of the material
constants as one of their basic inputs. The methodology, used for determining the structure material
elastic constants, is based on mechanical tests, being mostly tensile ones, applied on partially loaded
specimens. There be can glass materials used as different alloy elements, therefore the glass elastic
constants can vary considerably. However, using classic glass tensile specimens for tensile tests can
be problematic, due to their production and implementation of tensile tests. Experimental methods
for identifying the glass Young’s modulus of elasticity and Poisson’s ratio are based on a comparison
of the displacement measurements applied on the glass beam, or curved rod, samples, combined with
their displacements calculation.
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1 Introduction

Glass can create a number of inorganic compounds. In chemical terms the conventional glass is a solid
solution of various silicates of sodium, potassium, calcium, or lead or barium which are accompanied by other
compounds, especially metal oxides. Selecting the components and their relative representation is possible to
influence the properties of the glass in relatively wide limits, see Tab. 1, [2]. The variation of elastic constants
of the glass is considerable. Therefore, it is desirable to have an operational method for identification of elastic
constants - Young’s modulus of elasticity and Poisson’s ratio - for structures of glass materials. Strength of
glass significantly depends on the surface properties, the dimensions of the sample and internal defects. The
classic shapes of samples for the realization of tensile tests are quite complicated, which limits their production
capabilities and possible behavior of glass samples during the experiment. The elastic constants of the glass
must be verified on samples of a simple shape with a smooth surface to eliminate the negative properties
of glass. The Etalon bar method [1] is based on two simple physical and numerical experiments. The elastic
constants result from comparison displacements v and u (see Fig. 1) of a curved rod which is loaded by bending
and torsion. The displacement v (for given force F ) is a dominant function of Young’s modulus E. Therefore,
comparing the displacement measurement with its calculation it determines E. The Poisson’s ratio ν is then
determined by comparing the displacement measurement u(E, ν) with its calculation.

Fig. 1: Displacements v, u of curved rod.
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Tab. 1: Physical and mechanical properties of common glass.

the property unit value range

compressive strength MPa 700 - 1200

tensile strength MPa 30 - 90

bending strength MPa 40 - 190

Young’s modulus GPa 50 - 90

Poisson’s ratio - 0.14 - 0.32

coefficient of thermal expansion K−1 6·10−6 - 9·10−6

density Kgm−3 2200 - 6000

2 Glass Test Specimens and Their Computational Models

A rod smooth specimen of circular cross section from of glass is relatively easily produced. To identify
the Young’s modulus of elasticity E of the glass sample calculation is sufficient to compare the computational
deflection of the beam or curved rod vc simple (using Castigliano’s theorem) with the experimentally measured
deflection v ≡ vm (see Fig. 1). According to Eq. 1, where U is elastic strain energy, F is force in direction
of vc or uc, Jo is the principal second moment of cross section of area, JT is polar second moment of cross
section of area, M is internal bending moment in the beam or rod, T is internal torque in the rod, L is length
of the beam or rod, ds is element of the length of beam or rod. In case that the glass produced samples have a
variable circular section, it is possible to realize the segment model of a beam or rod, see Fig. 2. To identify the
Poisson’s ratio the procedure is similar using a sample in a shape of a curved rod loaded by bending and torsion,
as shown in Fig. 1 - where u ≡ um. Poisson’s ratio ν is determined comparing the measured displacement um
with the calculated displacement uc (using Castigliano’s theorem) - according to Eq. 2. Segment solutions of
displacement uc of curved rod refines the identification of ν.
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(a) variable circular section of sample
(b) segment approximation of the sample

Fig. 2: Experimental beam shape to identify Young’s modulus of elasticity E.
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Fig. 3: Measuring the deflection of a glass beam specimen.

Fig. 4: Deflection of a glass curve rod specimen. Fig. 5: Model of curved rod specimen.

Relatively easily manufacturable glass samples, see Fig. 2a, c, can be, in some cases, modeled as rods
having constant circular cross-sections. The deflection vm results, measured on the glass beam (Fig. 2a) samples
by using the three-point bending test, are presented in Fig. 3. And the deflection results vm, measured on the
cantilevered glass test samples, shaped as curved rods, Fig. 2c, when loaded in bending, are presented in Fig. 4.
The curved rod computational model, see Fig. 5, consists of the three areas s1, s2, s3. When we use a set
of weights representing a set of loading forces in these experiments, then we use only of the regression line
linear term of the deflection measurements vm, which we compare with deflection vc obtained using Eq. 2.
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Analogously, also the bending moment M(s) of the sample in the calculation of deflection will be a function
of the same loading force F , which is used in the calculation of deflection vm measured.

The curved cantilever beam (Fig. 6), loaded with a combination of bending moment and torque, which is
used to identify the Poisson’s ratio ν, is tested analogously. In the computational model (Fig. 7), the integration
area of the circular curve rod, starts at the loading force F action point, which has a coordinate s1 and ends at
position s2, where the curved rod is clamped.

Fig. 6: Displacement of a glass curve rod speci-
men.

Fig. 7: Model of curved rod specimen.

These analytical models can further be refined by respecting the specimen dimensional changes when cal-
culating the displacements. The rod is divided into a suitable number n of computational areas in which we can
measure the rod dimensions, according to Fig. 2b, which will be used in the calculation model. The Young’s
modulus of elasticity E identification can be solved by analogy with Eq. 3 and the identification of Poisson’s
ratio can be solved similarly to Eq. 4.
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