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Abstract. This paper provides an approach of differential geometry for modelling of the four-

wheeled Ackermann-steered vehicle. Nonholonomic constraints which represent no-slip and 

no-slide conditions are modelled in the local coordinate systems by iterative Jacobian method. 

In this paper are derived kinematic equations of motion of the vehicle moving in plane. 

Introduction 

The motion characteristics of a vehicle play general role in planning its path. The vehicle 

moving in plane has generally three degrees of freedom - translation along two axes and 

rotation about axis perpendicular to the plane. But not every one of these movements is 

possible. It is necessary to consider nonholonomic constraints resulting from velocity 

conditions imposed on wheels. This means that when the vehicle is in motion there must be 

no-slip and no-slide on wheels. 

 

Fig. 1 Geometry of the Ackermann steered vehicle 
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The importance of Ackermann steering geometry (Fig. 1) is in prevention of wheels to slip 

sideways while vehicle is moving along a curved path. Geometrical solution is such that all 

wheels have their axes arranged as the radii of circles with common center.  

System modelling 

Based on this idea we can simplify the four wheeled vehicle model into two wheeled 

bicycle model as is shown in (Fig. 2). The motion characteristics of this simplified model are 

the same as characteristics of four wheeled vehicle. 

 
Fig. 2 Simplified model of Ackermann steered four wheeled vehicle 

We can define nonholonomic constraints of the moving vehicle in inertial coordinate 

system or in vehicle’s local coordinate systems which is easier. In local coordinate systems 1g  

and 2g these constraints are expressed as no-slip and no-slide conditions 
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where   is angular velocity of drive wheel, r  is radius of wheel and   are velocities in local 

coordinate systems. 

Position and orientation of local coordinate systems 1g  and 2g relative to coordinate 

system g located at the vehicle’s center of gravity is given by  
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Velocities expressed in local coordinate systems 
1gξ  and 

2gξ  can be mapped with 

velocities expressed in the vehicle’s center of gravity .gξ  The map from vehicle’s center of 

gravity to local velocities is the adjoint inverse action  
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Substituting velocity components 
1
,x

g 1

y

g  and 
2

y

g  from equations (5) into nonholonomic 

constraints (1, 2, 3) we obtain differential equations in a Pfaffian form 
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The above equations we can rewrite into matrix form 
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By editing the above equation we obtain relation representing the influence of shape 

speeds acting on local velocity of the vehicle 
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In geometric mechanics, the equation of motion for principally kinematic system are 

generally expressed as kinematic reconstruction equation 

   ,r ξ A r   (9) 

where ξ  is the velocity vector of the vehicle’s center of gravity, A  is the local connection 

associated with system constraints and r  is vector of the shape velocities. 

Finally the mathematical model of the Ackermann steered vehicle expressed in inertial 

coordinate system is given by equation 
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Conclusions 

The aim of this paper was targeted to mathematical modelling of the four wheeled vehicle 

with nonholonomic constraints. Nonholonomic constraints were derived in coordinate system 

set in center of gravity of the vehicle by iterative Jacobian method. Based on these constraints 

was formed kinematic model of the vehicle. 
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