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Abstract. In this paper the eigenfrequencies of carbon nanotubes are investigated. Especially, 
effect of chirality of the carbon nanotubes is studied. The effect of the change of chiral angle 
is investigated for the carbon nanotubes with the same diameter, length and two different 
types of boundary conditions. The nonlocal continuum theory results to application of 
nonlocal parameter which has influence to eigenfrequencies of carbon nanotubes. All 
computations in the paper are made by finite element method, where standard mass matrix of 
finite element is corrected and updated by nonlocal parameter. 

Introduction 

Carbon nanotubes (CNTs) are closed graphene sheets of cylindrical shape with interesting 
mechanical properties. Especially, high tensile strength and stiffness in relation to very small 
weight attracts attention of engineers and researches. Three basic methods of nanotubes 
investigation are used to accomplish simulation of SWCNTs: molecular dynamic 
computations, atomistic-based modelling and the continuum approach. The last one is used 
here for description of bending vibration and accordingly it can serve as a mean tool for 
indirect specification of carbon nanotube properties. The continuum beam relations used in 
the paper are based on the theory of nonlocal elasticity published by Eringen [1]. The 
equations are solved by the finite element method. 

In this paper the finite element modal analysis of the CNTs is performed. The effect of 
chirality, dimensions and nonlocal parameter on the eigenfrequencies of CNTs is investigated. 
The matrix formulations of the stiffness matrix and mass matrix of finite element is used for 
the modelling and computations of CNTs. The effect of nonlocal parameter is represented by 
the coefficient used in the mass matrix. 

Finite element modelling of carbon nanotubes 

In contrast to the classical elasticity theory Eringen takes into account the scale effect and its 
influence to stress at the reference point of a body. Accordingly, the stress at a point is a 
function of strain field at every point of body. Review of nonlocal elastic models of CNTs is 
given in [1]. The interesting results of CNT research can be found in literature [1]-[6]. The 
nonlocal finite element formulation is presented for computation of eigenfrequencies of 
CNTs. The mass and stiffness matrices of finite element are derived from equation 
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Here, u  is the transverse displacement of the beam, bm  is the mass of beam related to the 
unit length,   is nonlocal parameter, E  is Young modulus, J  is the second moment of 
cross-section area, x  is a coordinate of point in beam nanotube, t  is time. 

As there is a problem in definition of thickness of the nanotubes, the values necessary for 
computations were determined according to [4] as 

     242.4 10 kg/nm ,m A D  (2) 

     
2 3 2428.48 397.08 109.24 kgnm /s ,EI D D  (3) 

where D  is a diameter of nanotube. The nanotube diameter can be computed from equation 
2 2

02 3( ) / ,D R a m n mn      (4) 
where 42.10 a  Å is a carbon–carbon bond length and the integers m and n are called as 
chiral indices. There are known three configuration types of chiral indices called as armchair 
(m, m), chiral (m, n) and zigzag (m, 0). Here, for armchair nanotube we have .m n  

For the modelling of CNTs, we have used plane beam element with four degrees of 
freedom, length el  and mass .bm  The basic FEM matrices are formulated by standard matrix 
of shape functions ( )xN . Then, the element stiffness and mass matrices can be defined 
respectively by equations 
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At first, the effect of chirality to eigenfrequencies of CNTs is investigated. The 

computations of the first two eigenfreqeuncies are accomplished for different types of CNTs 
but with approximately the same diameters. The length of tubes is 10 nm and the following 
types of boundary conditions are used: fixed–free (F–Fr) and simply–simply supported (S–S). 
From computations (Table 1) we see that the chirality has effect to the results mainly due to 
small change of tube diameter. Under otherwise identical conditions, the effect of chirality of 
SWCNTs is negligible. For this reason, only armchair CNTs with chirality (m, m) are 
investigated in this paper. 
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Fig.1 Types of carbon nanotubes 

Tab.1 Eigenfrequencies of CNTs with different chiral angles and boundary condition 
SWCNT 
(n, m) 

Chiral 
angle (°) 

Diameter 
(nm) 

Frequency (THz) 
F-Fr (1st) F-Fr (2nd) S-S (1st) S-S (2nd) 

(9, 0) 0.00 0.7047 0.02795 0.17515 0.07845 0.31381 
(8, 2) 10.89 0.7177 0.02858 0.17912 0.08023 0.32092 
(7, 3) 17.00 0.6960 0.02753 0.17249 0.07726 0.30905 
(6, 4) 23.41 0.6826 0.02689 0.16852 0.07548 0.30192 
(5, 5) 30.00 0.6781 0.02668 0.16719 0.07489 0.29955 

The four CNTs with the same chirality (m, m) but different diameters are modelled 
(Table 2). These CNTs are modelled with lengths varying from 10 nm to 100 nm and the 
finite element modal analysis is performed on these CNTs. Due to big amount of data, the 
results are given only for the first and the fifth eigenfrequency of CNTs with fixed-free 
boundary conditions and they are presented in Figs. 2-3. From the figures can be seen that the 
bigger diameter of the CNT leads to the higher eigenfrequency and the longer CNT leads to 
the smaller eigenfrequency. 
Tab.2 Modelled carbon nanotubes 

SWCNT 
(m, m) 

Chiral 
angle (°) 

Diameter 
(nm) 

(5, 5) 30.00 0.6785 
(10, 10) 30.00 1.357 
(20, 20) 30.00 2.714 
(40, 40) 30.00 5.428 
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Fig. 2 The first eigenfrequencies of carbon 
nanotubes 

Fig. 3 The fifth eigenfrequencies of carbon 
nanotubes 

Next, the effect of nonlocal parameter to the eigenfrequencies of CNTs is studied. The 
computations are accomplished for nonlocal parameters 0.01, 0.1, 0.2, 0.4, 1.2. The CNTs 
with the chirality (10, 10), the diameter D = 1.357 nm and the lengths from 10 to 100 nm are 
modelled. In the Figs. 4 – 7 are shown the first four eigenfrequencies with and without 
nonlocal parameter and for the fixed-free boundary conditions. From the figures can be seen 
that the nonlocal parameter significantly affects the eigenfrequencies of the CNTs. The 
nonlocal parameter smaller than one leads to higher eigenfrequencies as the eigenfrequencies 
computed without nonlocal parameter and the nonlocal parameter higher than one leads to 
smaller eigenfrequencies as the ones computed without nonlocal parameters. The nonlocal 
parameters smaller than one have more pronounced effect on the value of the 
eigenfrequencies. 

  

Fig. 4 The first eigenfrequencies of carbon 
nanotubes with and without nonlocal 
parameter 

Fig. 5 The second eigenfrequencies of carbon 
nanotubes with and without nonlocal 
parameter 
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Fig. 6 The third eigenfrequencies of carbon 
nanotubes with and without nonlocal 
parameter 

Fig. 7 The fourth eigenfrequencies of carbon 
nanotubes with and without nonlocal 
parameter 

Conclusions 

In the paper are described numerical computations of eigenfrequencies of carbon nanotubes 
accomplished for different nonlocal parameters, chirality, lengths and boundary conditions. At 
first, the influence of chiral angle on the values of eigenfrequencies was studied. From 
computations result that the eigenfrequencies of CNTs with the same diameters and lengths 
were not affected by the chiral angle. Next, the effect of nonlocal parameter was studied. 
From the results can be stated that the value of nonlocal parameter affected the 
eigenfrequencies. In general, the smaller value of the nonlocal parameter, the higher 
eigenfrequency of nanotube. Computation of eigenfrequencies of carbon nanotubes can serve 
as a very important tool for determination of basic material properties of homogenized 
nanotubes, because it is much easier to measure frequencies of nanotubes as e.g. their Young 
modulus, or other properties. Accordingly, the eigenfrequencies serve for indirect 
determination of material and geometric properties of nanotubes. 
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