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Abstract: Hyperelastic materials are characterized by the fact that they do not have a linear region
in the stress-strain diagram, where there is a linear relationship between stress and strain. Thus, their
response on mechanical loading cannot be described by material constants such as Young’s modulus
and Poisson’s ratio. For that purpose strain energy potential is usually used. The paper deals with
the evaluation of the material model of hyperelastic material in the Abaqus/CAE using the material
data obtained from experimental measurements. The tested samples were made from a vehicle water
channel seal. This material can be referred to as closed cell sponge rubber. It is a porous material made
of expanded rubber with an air-filled matrix structure. For the purposes of evaluating the material
model, tensile tests were performed at two different loading speeds, where digital image correlation
system was used to measure deformation. Marlow, Ogden and reduced polynomial forms of strain
energy potential were used to fit the hyperelastic material model on the test data.
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1 Introduction

Isotropic, linear elasticity theory is characterized by two important physical constants: Young’s modulus
and Poisson’s ratio. In isotropic, nonlinear elasticity theory, the traditional material constants play a less im-
portant role because the material response to mechanical loading is not generally described by constants [1].
Hyperelastic materials are often used in engineering practice for the production of tires, seals, washers, mechan-
ical energy absorbers, etc. Hyperelasticity is a property of elastomers that can extend by hundreds of percent
of their original length. The mechanical response of hyperelastic materials is sensitive to variety of factors
including strain rate, stress state, temperature, etc. Due to the unique cellular structures in foam materials, the
Poisson’s ratio has been observed to be positive, zero, or even negative, depending on cellular structures, den-
sities, or matrix material. When the foam materials are subjected to large deformations, the material response
becomes nonlinear, usually in the form of a plateau followed by a drastic hardening behavior after densifica-
tion. Such a nonlinear response results in the Poisson’s ratio no longer being a constant, but rather varying with
strain [2].

Hyperelastic materials are described in terms of a “strain energy potential U(ε)“ that defines the strain en-
ergy stored in the material per unit of reference volume (volume in the initial configuration) as a function of the
strain at that point in the material. There are several forms of strain energy potentials available in Abaqus/CAE
to model approximately incompressible isotropic elastomers. In this paper the Marlow, Ogden and the Reduced
polynomial are described. Generally, when data from multiple experimental tests are available (typically, this
requires at least uniaxial and equibiaxial test data), the Ogden form is more accurate in fitting experimental
results. If limited test data are available for calibration, Reduced polynomial form provide reasonable behav-
ior. When only one set of test data (uniaxial, equibiaxial, or planar test data) is available, the Marlow form is
recommended. In this case a strain energy potential is constructed that will reproduce the test data exactly and
that will have reasonable behavior in other deformation modes [3].

2 Hyperelastic material models

Marlow form

The form of the Marlow strain energy potential is
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U = Udev(I1) + Uvol(Jel), (1)

where U is the strain energy per unit of reference volume, with Udev as its deviatoric part and Uvol as its
volumetric part; I1 = λ
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3 is the first deviatoric strain invariant, where the deviatoric stretches

λi = J− 1
3λi, J is the total volume ratio, Jel is the elastic volume ratio and λi are the principal stretches. The

deviatoric part of the potential is defined by providing either uniaxial, equibiaxial, or planar test data; while the
volumetric part is defined by providing the volumetric test data, defining the Poisson’s ratio, or specifying the
lateral strains together with the uniaxial, equibiaxial, or planar test data [3].

Ogden form

The form of the Ogden strain energy potential is
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where N is a material parameter; and µi, ai and Di are temperature-dependent material parameters. The initial

shear modulus and bulk modulus for the Ogden form are given by µ0 =
N∑
i=1

µi, K0 =
2
D1

[3].

Reduced polynomial form

The form of the reduced polynomial strain energy potential is

U =
∑

Ci0(I1 − 3)i +
∑ 1

Di
(Jel − 1)

2i
, (3)

where Ci0 and Di are temperature-dependent material parameters. The initial shear modulus and bulk modulus
are given by µ0 = 2C10, K0 =

2
D1

[3].

Hyperelastic material stability

It is common for the hyperelastic material model determined from the test data to be unstable at certain
strain magnitudes. Abaqus performs a stability check to determine the strain magnitudes where unstable be-
havior will occur. Once the strain energy potential is determined, the behavior of the hyperelastic model in
Abaqus is established. However, the quality of this behavior must be assessed: the prediction of material
behavior under different deformation modes must be compared against the experimental data. An important
consideration in judging the quality of the fit to experimental data is the concept of material or Drucker stabil-
ity. The Drucker stability condition for an incompressible material requires that the change in the stress, dσ,
following from any infinitesimal change in the logarithmic strain, dε, satisfies the inequality

dσ : dε > 0. (4)

Using

dσ = D : dε, (5)

where D is the tangent material stiffness, the inequality becomes

dε : D : dε > 0, (6)

thus requiring the tangential material stiffness to be positive-definite [3].
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3 Experimental measurements

The sample dimensions and tensile test methodology were performed according to STN ISO 37 [4]. The
samples were made from a vehicle water channel seal, from the upper part that can be referred to as closed cell
sponge rubber (Fig. 1). It is a porous material made of expanded rubber with an air-filled matrix structure.

Tensile tests were performed on a FPZ 100/1 testing machine. Digital image correlation system Q-450 with
one high-speed camera was used to measure deformation of the samples (Fig. 2a). Digital image correlation
(DIC) is an optical method that allows to measure displacements and surface strains of an object [5]. Defor-
mation fields are determined by correlation of corresponding sub-images called facets before and after loading.
Each pattern must contain a characteristic part of the contrast stochastic speckle pattern that needs to be applied
on the surface of the sample.

Fig. 1: Rubber seal.

In this work, the pattern was created by dotting with a white marker. This method proved to be the most
suitable for creating a pattern on the surface of the rubber sample. The use of pre-printed adhesive vinyl foil was
not an option due to its relatively high stiffness and the threat of peeling under large deformations. Creating a
pattern using white spray paint also proved inappropriate. The paint had a tendency to fall off after drying. The
pattern formed using white marker was stable until the sample was torn. The size of the speckles was optimal
with respect to the dimensions of the sample (Fig. 2c). The resulting pattern ensured good image correlation.
The deformation field remained compact until the last step, as shown in Fig. 3a. The obtained surface contour
of the sample is given by a virtual grid of points. The size of the facets was set to 9 px and the grid size to
5 px. Tensile tests were performed at two speeds 84 mm/min and 600 mm/min. The sampling frequency of the
camera was set to 50 fps in the first case and 100 fps in the second case.

Fig. 2: a) Tensile test; b) Sample with stochastic pattern; c) Sample dimensions.

The tensile force was synchronously measured using a force sensor integrated into the testing machine. The
measurements were evaluated in Istra 4D software (Fig. 3a). Nominal stress and nominal strain were calculated
according to the procedure defined in the standard [4]. For that purpose, the virtual line gauges were used
(Fig. 3b). The nominal strain was determined based on the relative distance of these gauges.

From strain field (see Fig. 3a), the values needed to determine the Poisson ratio were obtained. The Pois-
son’s ratio µ determines the ratio of relative transverse shortening to its relative elongation, i.e.

µ =
−εx
εy

, (7)
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Fig. 3: a) Longitudinal strain field; b) Virtual gauges.

where εx and εy represent strain in transverse and axial direction, respectively. Their values were obtained from
Istra 4D using a virtual line gauges (see Fig. 3b).

Fig. 4: Stress-strain diagram of tested rubber sponge samples.

Fig. 5: Lateral vs longitudinal strain of tested rubber sponge samples.

The results of the measurements are shown in the following figures. Fig. 4 shows the stress-strain curve
of tested rubber sponge samples for two different loading speed. The dependence of the lateral nominal strain
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on the elongation is shown in Fig. 5. Since the strains were evaluated in two perpendicular directions, it was
possible to show how the Poisson’s ratio decreases with strain (see Fig. 6).

Fig. 6: Poisson’s ratio vs longitudinal strain of tested rubber sponge samples.

4 Calibrating a material model

The meausred material data were imported into the Abaqus/CAE to calibrate the hyperelastic material using
the “Evaluate” function. This feature allows to predict the behavior of a material model. Calibration process
is based on fitting the hyperelastic model to experiment test data. The best fit model must meet two criteria:
stability and the least possible fitting errors. Fig. 7 and Fig. 8 show the material characteristics obtained by the
fitting process. In addition to the Marlow form, Ogden and Reduced polynomial forms of the higher order were
used. The fulfillment of the criteria is given in Tab. 1 and Tab. 2.

Fig. 7: Fitted stress-strain curves of the sample loaded at a speed of 84 mm/min.

Based on the evaluation of the calibration results of the material models, it was concluded that the Marlow,
Ogden 2nd order and Reduced Polynomial 2nd order models are the most suitable with respect to stability for
specimens loaded at 84 mm/min and Marlow and Reduced Polynomial 3rd order models for specimens loaded
at 600 mm/min. The coefficients of the selected models are given in Table 3.
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Tab. 1: Stability and fitting error of the material model at a tensile speed of 84 mm/min.

Stability
Forms

Marlow
Ogden Ogden Reduced polynom. Reduced polynom.

n=2 n=4 n=2 n=4

Uniaxial tension Stable Stable Stable Stable < 2.6800
Uniaxial compression Stable Stable > -0.0930 Stable > -0.8565

Planar tension Stable Stable < 0.0900 Stable < 2.600
Planar compression Stable Stable > -0.0826 Stable > -0.7222
Volumetric tension Stable Stable Stable Stable Stable

Volumetric compression Stable Stable Stable Stable Stable

Fitting error - 0.21 0.05 0.31 0.24

Tab. 2: Stability and fitting error of the material model at a tensile speed of 600 mm/min.

Stability
Forms

Marlow
Ogden Ogden Reduced polynom. Reduced polynom.

n=2 n=3 n=2 n=4

Uniaxial tension Stable < 1.7100 < 2.6000 Stable < 2.7800
Uniaxial compression Stable Stable > -0.9228 Stable > -0.8628

Planar tension Stable Stable < 2.6000 Stable < 2.6900
Planar compression Stable Stable > -0.7222 Stable > -0.7290
Volumetric tension Stable Stable Stable Stable Stable

Volumetric compression Stable Stable Stable Stable Stable

Fitting error - 8.99 10.20 13.10 10.18

Tab. 3: Coefficients of Reduced polynomial 2nd order forms.

84 mm/min 600 mm/min

Ogden n=2 Reduced polynomial n=2 Reduced polynomial n=3

µ1 = 0.32738 C10 = 0.2374 C10 = -2.4761 × 10−4

µ2 = 0.2856 C20 = -4.8579 × 10−4 C20 = 0.11091
α1 = 1.8600 C30 = -5.5865 × 10−3

α2 = -3.9997

The other coefficients are zero.
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Fig. 8: Fitted stress-strain curves of the sample loaded at a speed of 600 mm/min.

5 Conclusion

The paper presented the process of calibration of hyperelastic material model in the Abaqus/CAE program
based on data obtained during tensile tests performed at two load rates. Analyzed material was a porous
expanded rubber with an air-filled matrix structure. Marlow, Ogden and Reduced Polynomial forms were used
in the fitting process. The selection of the most suitable model depends on the fitting accuracy and on the
deformation interval in which the material response is stable. The stability criterion evaluates whether the
deformation energy is positive. When a material model is unstable and a component deforms through that
instability, the result is non-physical behavior that can cause nonconvergence. Since the stress-strain response
of hyperelastic materials is loading mode dependent, there is important to minimize model fit errors in that
loading mode that is predominant. For this reason, the visual evaluation of the user is as important as the
mentioned criteria. Based on the presented results, it can be stated that the best fitting and stable model was
provided by Marlow form.
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