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This article shows some studies of a low-cycle material fatigue caused by cyclical contact
between two spheres with the same diameters. The spheres are made from modified 15219 steel.
The problem was solved by FEM (SW MSC.MARC/Mentat). The numerical model is axi-
symmetric. The material is considered to be isotropic with a von Mises surface of plasticity and
it follows the kinematic hardening rule. The results show hysteresis loops from which the number
of cycles until fracture can be determined.
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INTRODUCTION

For material failures that are caused by the low-cycle fatigue (LCF), it is necessary to
describe material behaviour using a closed hysteresis loop (an area of cyclical plasticity). To
determine the lifetime of machine parts it is important to find the total number of cycles
which cause the initialisation of first fatigue cracks. This paper describes some case of LCF
study for the mechanical cyclical contact between two spheres with the same diameters.
Friction influence has been neglected. For all presented solutions the FEM
(MSC.MARC/MSC.Mentat software) has been used. Both spheres are made up from the same
modified steel material 15219 (0.06%C, 1.72%Mn, 0.26%S1, 0.009%P, 0.0105%S, 0.32%Mo,
0.063%Nb, 0.027%Al). Material behaviours were acquired from experiment [1], [7] and [8].

THE NUMERICAL MODEL

The basic boundary conditions are the axi-symmetric condition (around the X-axis)
and the planar symmetry (YZ-plane). During the pulse pressing of two identical spheres (with
diameter ¢ 210 mm), the contact area must be a circle plane. Therefore it is advantageous and
necessary to solve only one sphere, which is in mechanical contact with the absolutely rigid
plane. For more details see fig.1.
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A time-dependent periodical force F=F(t) (which contains four cycles with
maximum value Fmax = 200000 N and minimum value Fmin = 0 N) acted in the centre of
the sphere, see fig.1. The time solution (8 s) was divided into 628 steps with various sizes,
see fig.1.
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Fig.1. FEM model with loads, symmetry conditions and boundary conditions.
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Fig.2 The S, - S, dependence during the solution.



Mechanical contact has been simulated by putting the fixed rigid plane in contact
with the edges of quadrilateral (four node) elements. Mesh density has been increased in
the area of mechanical contact. The contact element edges were approximated analytically
using a spline function (giving a more realistic solution), see [3] and [4]. The Finite
element mesh contains 7012 nodes and 6888 elements.

Both spheres are made from modified 15219 steel (yield stress R, = 477.9 MPa,

tensile strength R, = 690 MPa), see [1] and [2] or [7] and [8]. The material is considered

to be isotropic and elasto-plastic with kinematic hardening rule, which is sometimes
advisable for the LCF phenomenon.

THE RESULTS FOR CYCLICAL CONTACT BETWEEN TWO SPHERES
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Fig.3 The values of equivalent plastic strain S, and equivalent von Mises stress S, .

In this case, the hysteresis loop (equivalent total strain S, [1] - equivalent von

Mises stress S, [MPa] dependence) for the critical point of the material was calculated
from FE solution as depicted in fig.2. The cyclical changing of equivalent plastic strains
S.p [11, equivalent elastic strains S, [1], equivalent total strains S, [1] and mean
normal stresses o, = (o, + o, + o, )/3 [MPa] are shown (cyclical plasticity), see fig.2, 3
and 4.

At this point it is possible to calculate the number of cycles N, [cycle] needed for

initiation of fatigue cracks. For some methods and examples of how to calculate N, see
(11, [6], [7], [8], [10] and [11].
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Fig.4 First proposal model of fictive hysteresis loop (S, , - ,, dependence).

FIRST PROPOSAL MODEL OF HYSTERESIS LOOP

Hence Fig.4 shows first proposal model of hysteresis loop based on S, - o,

dependence. This fictive hysteresis loop (shaded area in fig.4) should be important in
calculating the number of cycles N; necessary for fatigue crack initiation, see also [1],

[7], [8] and [11].
SECOND PROPOSAL MODEL OF FICTIVE HYSTERESIS LOOP

Figure 5 shows second proposal model of fictive hysteresis loop (S, - S_

dependence) based on the fig.2. (S,, - S_ dependence), where S_;,, is a fictive equivalent

o fic
stress measured in /MPa/ This fictive hysteresis loop (shaded area in fig.5) probably
should be important in calculating the number of cycles N; necessary for fatigue crack

initiation. The fictive loop was created by reflecting of some parts S, - S_ dependence

about the axis of symmetry. This axis of symmetry is defined via values where S_ = 0

MPa.
The number of cycles N with consideration of mean and amplitude stresses can

be calculated using the following equation.

So‘ ic é S(T ic %
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where o [MPa] and b [1] are material parameters of 15219 steel.




For more details and derivation of equation (1) see [8] or [1] and [7] or [11].
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dependencies during the solution.

For similar problems of contact fatigue see also [9] (SW ANSYS) and [10] (SW
ABAQUS).

CONCLUSIONS

By FE simulations of twin spheres with the same diameters, which follow the
kinematic hardening rule, it is possible to solve LCF problems. Figure 2, 4 and 5 show the
hysteresis loop and fictive hysteresis loop, which are important for calculation of the
number of cycles necessary for fatigue crack initiation. Equation (1) describes one possible
way of calculating the number of cycles N

This numerical study is good base for future experimental measurements in our
department.

Taken together, this paper, and the given references [1], [2], [9], [10] and [12] show
that the FE model can be used to simulate plastic shakedown and ratchetting material
responses but experiments are necessary.
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