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Abstract

This paper describes the development of a general purpose model for wave prop-
agation in Cartesian system. When isotropic materials are used, the model can
account for elastic and visco-elastic isotropic materials, single or multi-layered struc-
tures, and free or leaky systems. Model determines what resonances can exist in
order to satisfy the boundary conditions and the bulk wave propagation character-
istics in each of the layers. These resonances control how ultrasonic waves will be
guided in the system and what properties each of these waves will have.
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1 Introduction

Research into the use of ultrasonics for nondestructive inspection frequently involves the
study of the interaction of sound with multilayered plate structures. Inspection methods
for such tasks can be considered broadly in two groups: response methods in which the
reflection and transmission characteristics of the plate are examined, and modal method
which address the plate wave propagation properties of the system. The development of
inspection techniques based on either approach requires the study of complicated wave
mechanics and relies strongly on the use of predictive modeling tools to enable the best
inspection strategies to be identified and their sensitivities to be evaluated.

The modeling tools may be developed from matrix formulations which describe elastic
waves in layered media with arbitrary numbers of layers. The matrix formulations have
featured in a large number of publications.˙Indeed there are currently two quite different
approaches and many variants which are in accepted use. The purpose of this paper is to
compare the main developments of the techniques and their implementation in response
and modal models.
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2 Field Equations for Plane Waves
in Flat Isotropic Elastic Layers

The field equations for the displacements and stresses in a flat isotropic solid layer may
be expressed as the superposition of the fields of four bulk waves within the layer.

The displacement equations of motion in the vector form:

ρ
∂2u
∂t2

= (λ+ µ)∇ (∇ · u) + µ∇2u (1)

where u are displacements in the Cartesian coordinate system x, t is time, ρis density, λ
and µ are Lamé’s elastic stiffness constants.

This equation cannot be integrated directly. A convenient way of presenting the solutions
in vector form is by the Helmholtz method, in which longitudinal waves (L) are described
by a scalar function φ and shear waves (S ) vector function H whose direction is normal
to both the direction of wave propagation and the direction of particle motion:

φ = ALe
i(k·x−ωt), |H| = ASe

i(k·x−ωt) (2)

Here AL and AS are the longitudinal and shear wave amplitudes, k is the wavenumber
vector and ωis the angular frequency.

Fig. 1 illustrated the coordinate system which will be used for the plate. For plane strain
there is no variation of any quantity in the x3 direction. Furthermore, the model is
restricted to waves whose particle motion is entirely in the plane u3 = 0.
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Figure 1: Labeling system for the multilayered plate.

The development of a model for wave motion in multilayered plates is achieved by the
superposition of longitudinal and shear bulk waves and the imposition of boundary con-
ditions at the interfaces between the layers. At each interface, it is sufficient to assume
eight waves: longitudinal and shear waves arriving from ”above” the interface and leaving
“below” the interface (L+, S+) and, similarly, longitudinal and shear waves arriving from
below the interface and leaving above the interface (L-, S-). Snell’s law requires that for
interaction of the waves they must all share the same frequency and spatial properties in
the x1 direction at each interface. It follows that all displacement and stress equations



have the same ω and the same k1 = ξ component of wavenumber, being the projection of
the wavenumber of the bulk wave onto the interface. All field equations therefore contain
the following factor, F , which is an invariant of the system: F = ei(ξx1−ωt) .

The displacements and stresses at any location in a layer may therefore be found by sum-
ming the contributions due to the four wave components in the layer. The field quantities
of interest are those which must be continuous at the interfaces: the two displacement
components u1 and u2, the normal stress σ22 and the shear stress σ12. Making the sub-
stitutions for convenience, ζ1 =

√
ω2/c2

1 − ξ2, ζ2 =
√
ω2/c2

2 − ξ2, gζ1 = eiζ1x2 , gζ2 = eiζ2x2 ,
and omitting the common factor, F , the field quantities in a layer are thus expressed by
the matrix equation:


u1

u2

σ22

σ12

 =



ξgζ1
ξ
gζ1

ζ2gζ2 − ζ2
gζ2

ζ1gζ1 − ζ1
gζ1

−ξgζ2 − ξ
gζ2

iρ (ω2 − 2c2
2ξ

2) gζ1
iρ(ω2−2c22ξ

2)
gζ1

−2iρξc2
2ζ2gζ2

2iρξc22ζ2
gζ2

2iρξc2
2ζ1gζ1

−2iρξc22ζ1
gζ1

iρ (ω2 − 2c2
2ξ

2) gζ2
iρ(ω2−2c22ξ

2)
gζ2




AL+

AL−
AS+

AS−


(3)

Matrix in (3) is the field marix, describing the relationship between the wave amplitudes
and the displacements and stresses at any location in any layer. Its coefficients depend on
the through-thickness position in the plate (x2), the material properties of the layer at the
position (ρ, c1 a c2), the frequency (ω)¸and the invariant plate wavenumber (ξ = k1). The
origin of the x2 coordinate may be placed arbitrary and may even be different
for each layer because phase differences between layers can be accounted for
by the phase of the complex wave number. The field matrix will be abbreviated
here to [D].

3 The Transfer Matrix Method

The Transfer Matrix method works by condensing the multilayered system into a set of
four equations relating the boundary conditions at the first interface to the boundary
conditions at the last interface (Thomson [3]). In the process, the equations for the
intermediate interfaces are eliminated so that the fields in all of the layers of the plate are
described solely in terms of the external boundary conditions.

A five layer system is illustrated as an example (Fig. 1), consisting of a three layer plate
with two half-spaces. The layers of the system are labeled l1 to l5, and the interfaces, i1
to i4. Each layer has its own x2 origin, defined as the location of its top interface, except
for the first layer (l1) which has its origin at its interface with (l2).

Assume that the displacements and stresses are known at the first interface, (i1). The
amplitudes of the four waves at the top of layer l2 can now be found by inverting the
matrix [D]:


A(L+)

A(L−)

A(S+)

A(S−)


l2

= [D]−1
l2,top


u1

u2

σ22

σ12


l2,top

(4)



At the second interface, (i2), the displacements and stresses at the bottom of the layer
can be found from the wave amplitudes in layer l2:


u1

u2

σ22

σ12


l2,bottom

= [D]
l2,bottom · [D]−1

l2,top


u1

u2

σ22

σ12


l2,top

(5)

The matrix product in this equation now relates the displacements and stresses between
the top and bottom surfaces of a single layer and may be reffered to as the layer matrix,
[L], which for layer l2 is:

[L]l2 = [D]
l2bottom · [D]−1

l2,top (6)

The inverted [D] matrix may be expressed explicitly [2] and therefore it is possible to write
out the coefficients of the [L] matrix. The displacements and stresses must be continuous
across a “welded” interface between two layers. Therefore


u1

u2

σ22

σ12


l3,top

=


u1

u2

σ22

σ12


l2,bottom

= [L]l2


u1

u2

σ22

σ12


l2,top

(7)

Clearly this process can be continued layer by layer for all subsequent layers¸resulting in
the equation:


u1

u2

σ22

σ12


ln,top

= [S]


u1

u2

σ22

σ12


l2,top

(8)

where n is the last layer and [S] is the system matrix consisting of the matrix product of
the layer matrices.

4 The Global Matrix Method

In 1964 Knopoff published a fundamentally different matrix formulation for multilayered
media [1]. The approach with the global matrix method is to assemble directly a single
matrix which represents the complete system. The system matrix consists of 4 (n− 1)
equations, where n is the total number of layers. The equations are based, in sets of four,
on satisfying the boundary conditions at each interface. Thus no assumption is made a
priori about any interdependence between the sets of equations for each interface. This
does not mean that the interfaces are completly independent, bacause the equations at an
interface are influenced by the arrival of waves from the neighboring interfaces. However,
as the frequency-thickness product is increased, the influence of an inhomogeneous wave
travelling along one interface on the displacements and stresses at the next interface
simply reduces. The method therefore remains perfectly stable for any frequency-thickness
produkt.



Consider a single interface, for example the second interface (i2 ) in Fig. 1. Utilizing
(3), the displacements and stresses at the interface can be expressed as a function of the
amplitudes of the waves at the top of the third layer (l3 ). They may also be expressed
as a function of the amplitudes of the waves at the bottom of the second layer (l2 ). For
continuity of displacements and stresses at the interface, both expressions should give
equal results. Therefore

[[D2b] [−D3t]]



A(L+)2

A(L−)2

A(S+)2

A(S−)2

A(L+)3

A(L−)3

A(S+)3

A(S−)3


= 0 (9)

where the subscripts 2 and 3 refer to layers l2 and l3 and t and b to the top and bottom
of each layer. This equation describes the interaction at interface i2 of the waves in the
adjoining layers l2 and l3.

Before proceeding, a modification is made to the origins of he bulk waves, which will affect
the field (3). Instead of defining the origin for all of the waves in a layer to be
the top of the layer, the origin of all waves is defined to be at their entry to
the layer. Thus downward traveling waves have their origin at the top of the layer and
upward travelling waves have their origin at the bottom of the layer. No change is made
for the half-spaces. With this modification, and referring to (3), the [D] matrices for the
top and bottom of a layer can be expressed, respectively, as:

[Dt] =


k1 k1gα Cβ −Cβgβ
Cα −Cαgα −k1 −k1gβ
iρB iρBgα −2iρk1β

2Cβ 2iρk1β
2Cβgβ

2iρk1β
2Cα −2iρk1β

2Cαgα iρB iρBgβ



[Db] =


k1gα k1 Cβgβ −Cβ
Cαgα −Cα −k1gβ −k1

iρBgα iρB −2iρk1β
2Cβgβ 2iρk1β

2Cβ
2iρk1β

2Cαgα −2iρk1β
2Cα iρBgβ iρB

 (10)

A similar equation to (9) can now be written for the interface i3 and simply added to the
global matrix, and similarly for all interfaces, resulting in a matrix of 4 (n− 1) equations
and 4n unknowns. In our case the matrix equation is:


[D1b] [−D2t]

[D2b] [−D3t]
[D3b] [−D4t]

[D4b] [−D5t]

 ·


[A1]
[A2]
[A3]
[A4]
[A5]

 = [0] (11)

where the wave amplitudes in each layer, A(L+), A(L−), A(S+), A(S−), have been abbrevi-
ated simply to a layer wave vector [A]. Four of the wave amplitudes in (11) must now



be identified as knowns and their coefficients in the equations moved to the right hand
side. For ultrasonics applications it is conveniet to choose the incoming waves in the two
half-spaces, A(L+)1, A(S+)1, A(L−)5 and A(S−)5, as the knowns, giving:


[
D−1b

]
[−D2t]
[D2b] [−D3t]

[D3b] [−D4t]
[D4b]

[
−D+

5t

]




[
A−1

]
[A2]
[A3]
[A4][
A+

5

]

 =


[
−D+

1b

]

[
D−5t

]




[
A+

1

]
[0]
[0]
[0][
A−5

]


(12)

where the superscripts + and - denote those parts of the matrices or vectors corresponding
to + and - waves, respectively. Thus the vectors [A+] and [A−] each consist of half of the
vector [A] and the matrices [D+] and [D−] are four-by-two partitions of the matrix [D].

The system matrix on the left hand side of (12) and the sparse matrix on the right side are
both square and of dimension 4 (n− 1). If the wave amplitudes for the incoming waves
are knows then the right hand side may be evaluated immediately.

5 Conclusion

The Global Matrix method has the advantages that it is robust and that the same matrix
may be used for all categories of solution, whether response or modal, vacuum or solid
half-spaces, real or complex plate wavenumber. The disadvantage is that the global matrix
may be large and therefore the solution may be relatively slow.
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