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Abstract

Thepaperpresentgesultsof numericalfit of axisymmetrid-E modelutilizing the modifiedGurson
modelinto experimentaimeasuementof tensilestrain and contraction evolutionsof notchedbars.

Thismodelcombine9lasticityanddamage by introducingporosity of a materialin orderto predict
final fracture. Althoughsomeof the parametes of the model can be determinedby microscopic
investigationof a specimenthe majority of the parametes needto be determinedy fitting numeri-
cally obtainedresultsinto experimentalones.In this paper it is shownthat sud a fit is achievable

However, the uniquenessf the obtainedparametes is questionable

I ntroduction

It has been observed that ductilefracturein metals can involve the generation of considerable
porosity caused by nucleation, growth and coal escence of microvoids. This process takes place
onmicro-level and can not be described by traditional constitutivelawssuch asvon Misestheory.
Hence, A. L. Gurson introduced a model for ductile fracture [1] which includes the influence
of hydrostatic stress on the evolution of plasticity condition. Coalescence of microvoids was
incorporated later by A. Needleman and V. Tvergaard [ 2, 3]. The determination of the parameters
describing the model need to be determined by fitting numerical resultsinto experiments. Several
procedures are mentioned in [3, 4]. The great advantage of this model is that the parameters
have their physical interpretation and once they are obtained they can be transferred between
different specimen regardless the geometry.

The purpose of this paper is to demonstrate a new possibility of obtaining the dominant
parameters. It is based on measuring axial and radial deformations in several locations in the
notch of a notched bar by video record processing. A detailed description of the experimental
realization can be found in [8]. Further information related to the topic of this paper can be
found in the works [5, 6].
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Gurson Moddl

It assumes spherical voids surrounded by homogeneous, incompressible von Mises material
(matrix). The model encompasses nucleation, growth and coal escence of voids and void volume
fraction serves here as a damage parameter. Most of the parameters of the model need to be
determined by fitting numerically obtained results into experiments. Ones these parameters are
known they can be transferred between different specimen regardless their geometries.

Plasticity and local damage are combined by means of the yield function [1]:
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where f is void volume fraction, ¢, actual yield stress of the matrix material, o, von Mises
equivalent stress and oF the trace of the Cauchy stress tensor.

For the description of the matrix material the linear-exponentia law isfrequently used:

% _ G (%)
6 = o for (g, > g,) and _E<ay> for (g, > g)

where n is hardening coefficient. Alternatively, true o - true e diagram can be used, instead.
The void evolution consists of two terms, namely the nucleation a growth rates. :

f = fouct + fyrown  withinitial condition  f(t,) = f,

The nucleation part of f controlled by deformation can be expressed as:

ot = In P [_1 <eﬁ — 6N>2]
sy/m N | 2 s

where £, isvolume fraction of void nucleating particles, e, mean nuclestion equivalent plastic
strain, €7 equivalent plastic strain of the matrix material and s standard deviation. For most
metal alloys, voids nucleate from large inclusions and second phase particles by either particle
fracture or interfacial decohesion.

The growth rate expressing the growth of already existing voids is assumed proportional to
hydrostatic part of the stresstensor: — forouwn = (1 — f) &7
where éﬁ” is the trace of the plastic equivalent rate tensor.

Void volume fraction f follows the equations mentioned above until it reaches a critical
value f.. From this point, modified void volume fraction f* is introduced (see [2]) and its

evolution is accelerated in order to approximately describe the final stage before rupture during
which coalescence of the individual voids takes place:

f; B fc
fp - fc
where f, stands for final/fracture void volume fraction when the material looses its carrying
capacity and f; isdefined as [} = f*(f,)-

Microscopic quantities of the matrix material and macroscopic quantities describing “ conti-
nuum” material are connected viathe equality of plasticwork: (1 — f) € g, = €0

fr=f for f<f and fr=fo+ (f = fo) for f>f



Conclusion

The computed strain evolution curves arein satisfactory agreement with the curves obtained
from the experiment. Nevertheless, the “try and see” process of finding meaningful values of so
many parametersisfar from a systematic approach. Therefore, there is atendency to reduce the
number of parameters.

In [7], for example, f. becomes a field quantity and is a function of f,, similarly as f..
Further reduction of the number of parametersis achieved by introducing a simpler nucleation
model characterized by one single parameter, only.

It is believed by the authors that the modifications suggested in [7] are worth following and
will become the subject of the next research.

Thepaperwaselaboratedasa part of the Reseath projectMSM235200003&ndthe Grant
GACRNO0106/99/1467
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Fig.5 Model with damage behavior included
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Fig.6 Model without damage

Fig.5 (referring to the model with the values from tab.1) and fig.6 (referring to the model
with plasticity only, i.e. without damage) show time history of &y, in the measuring nodes on
the surface of the notch. It can be seen that damage behavior has some influence on both the

shape and maximum values of the displayed curves.
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Fig.7 Model with damage behavior included

abl
1st Comp of Total Strain (g,l) s

1.2

=
e

Time (=100}
+—++ Mode 657
a—o——o Node 290

Fig.8 Model without damage

Fig.6 and fig.7 show time history of €;; at the measuring nodes on the surface of the
notch. Again, one can see that damage behavior has some influence on the shape and

maximum values of the displayed curves.

It is probably not necessary to point out that the curves in fig.2 and fig.3 should be
compared with the curves in fig.5 and fig.7, respectively — i.e. not with the curves in fig.2 and
fig.3 which were included for illustrative purpose only. A detailed comparison of the in-
fluence of individual parameters will be presented elsewhere. Let us just state that f, has a do-
minant role over the whole time history of tensile tests while f. and f. control more or less

only the time of rupture.

The presented results should be viewed as a starting point for further research, both
experimental and numerical, in other specific areas of mechanics — namely, nonlinear fracture

mechanics of materials with ductile fracture.



Numerical Determination of the Gurson Model Parameters

As already mentioned, most of the parameters of the material model can only be deter-
mined by comparison between numerical and experimental results. The problem is, however,
that during the experiments fracture appeared at relatively small strains (about 1/8 of the
strains referred in literature). Hence, the space for numerical fitting was rather limited.

The mesh used for computations can be seen in fig.4. The working diagram of the
aluminium alloy is in fig.5 (yield stress is 185 MPa) and the time history of the tensile force
can be seen in fig.6. Tab.1 shown the values of material parameters which lead to a satis-
factory fit into experimental results.
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Fig.4 Finite element mesh used for most computations with measuring nodes
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Fig.5 The working diagram of the material
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Fig.6 The time history of the tensile force
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Tab.1 Values of the material parameters used for numerical simulation
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Experimental Measurement

Details on experimental measurement can be found in [8] and is out of the scope of this
paper. To sum up in one sentence, a tensile test was conducted on a notched specimen with
measu-ring lines (see fig.1), which served for later evaluation of strains (see fig.2 and fig.3)
by means of digital video camera record processing.

Fig.1 Detail of the notch of the test specimen with measuring lines

Contraction on measuring lines Tensile strain between measuring lines
55 T T T 12 T T T T
line1 diff1

line2 i
line3
line4
line5
line6
line7
line8
line9
line10

* >SS 0% 0+ x

#% P>g o0 %0+ x

) 1 1 L
300 350 400 450 500 550
Time [sec] Time [sec]

Fig.2 Radial contraction on measuring lines Fig.3 Tensile strain between measuring lines



