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Abstrakt

Among the fundamental characteristic of solids are their elastic constants. As derivatives
of the free energy, elastic constants are closely connected to thermodynamic properties of
material. Extensive quantitative connections among thermodynamic properties can be made
if the elastic constants are known as functions of temperature and pressure. Until recently, most
often used methods for measurement of elastic constants have been ones based on ultrasonic
pulse propagation. Another group is resonance method based on the measurement of natural
frequencies of a sample and an inversion for its elastic parameters.
This contribution presents applications of both approaches in material science. The advan-

tages and limitations are demonstrated on the preliminary experiments.
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1 Acoustic waves and elastic moduli

In an arbitrary direction of an anisotropic solid, sound may be propagated in a form of three elastic
waves with different velocities. The wave polarization vectors (displacement motion directions) make
an orthogonal triplet with general orientation with respect to the propagation axis. If the planar
wave propagates in a principal material symmetry direction, Fig.1 a, then we can distinguish the
longitudinal (L - the polarization is parallel along the propagation) and shear (transverse - T - the
polarization is perpendicular to the propagation) waves, similarly as in the isotropic material.
The elastic-stiffness tensor of a cubic crystal has three independent elastic moduli C11, C12, and

C44, which may be determined from the velocities of waves propagating along the crystalographic
direction [100]

cL ≡ V[100][100] = (C11/ρ)
1/2, cT ≡ V[100][001] = V[100][010] = (C44/ρ)

1/2

and along the direction [110]

cqT ≡ V[110][1̄10] = ((C11 − C12)/(2ρ))
1/2 or cqL ≡ V[110][110] = ((C11 + C12 + 2C44)/ρ)

1/2,

where the first index of the wave velocity symbol V means the wave propagation and the second
index marks the wave polarization. The anisotropy magnitude of a cubic material is characterized
by the anisotropy factor A = 2C44/(C12 − C12). The value A = 1 means an isotropic material and
e.g. A = 1.56, 3.21 for single crystals Si, Cu (f.c.c.), resp.

∗Michal Landa, Jiří Plešek, Přemysl Urbánek, Institute of Thermomechanics, AS CR, Dolejškova 5, 182 00, Praha

8, Czech Republic, e-mail : ml@it.cas.cz, Václav Novák, Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech

Republic

1



direction of wave
propagation

direction of wave polarization
(displacement motion)

L

transducer

[001]
[010]

[100]

[110]

a) Acoustic waves

L-wave

T-wave

T-wave

initial pulse

reflected pulse

b) Pulse-Echo Measurement
of wave speed

c)  Cubic crystal

Obr. 1 Pulse - echo ultrasonic measurement.

2 Pulse-echo measurements of wave velocity

Conventional measurements of the elastic stiffness tensor CIJ are made by measuring the velocity
of acoustic waves along usually special directions in large specimens of the tested crystal, [2], [4]. In
the example, Fig.1 b, shown here a short pulse of longitudinal wave is generated by a transducer on
one crystal face; the pulse travels as a narrow beam through the crystal and reflects back from the
opposite face to produce an echo that is picked up by the transducer. The measured time between
the initiation of the pulse and the echo (called the pulse-echo time, τ) is equal to 2L/cL, where
L is the distance between the two crystal faces and cL is the longitudinal wave velocity. Thus the
velocity can be calculated directly from τ . Further, if the density of the crystal, ρ, is known, the
measurement also provides a direct determination of, C11, one component of the elastic-stiffness
tensor. By placing the transducer at various locations on the crystal and using both longitudinal
and shear waves, all the components of the elastic-stiffness tensor can be determined, Fig.1 c.

3 Relative changes of wave velocity in prestressed single crystal

The material Cu-Al-Ni belong to Cu-based alloys which are studied for their shape memory effect.
The single crystal Cu-Al-Ni was prepared in the Department of Metal Physics (Institute of Physics,
AS CR). The cubic specimens with the edge length 10mm, were cut with orientation [110][1̄10][001].
The pulse-echo method (central frequency 10MHz) was used for wave velocities measurement

in the stress-free crystal. The resulting values of velocities are : cL = 4.4992, cqL = 5.7147, cT =
3.6871, cqT = 1.0859mm/µs. and corresponding elastic constants : C11 = 142.8, C12 = 126.2, C44 =
95.90GPa are calculated with the mass density ρ = 7.0546g/cm3 (in the RT condition : T◦ =
24 − 25◦C). The anisotropy factor of the Cu-alloy A = 11.5 indicates very strong anisotropy. It is
also obvious from the polar diagrams of calculated phase and group velocity for crystalographic
plane {001}, Fig.2, using the measured elastic constants.
The velocity changes with applied pressure are caused by both sample geometry changes and

nonlinear elastic properties (in case the velocity changes are reversible). The nonlinear part is
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Obr. 2 Anisotropy of wave propagation in Cu-Al-Ni.

described by introducing of third order elastic constants (TOEC). These additional six quantities
(for a cubic crystal) may be determined from the pressure derivative of relative change in wave
velocity |d(∆V/c)dp|p=0 , where c is stress-free velocity, [1]. The nine combination of the direction of
applied stress, the propagation vectors and the polarization vectors may be used for determination
and verification TOEC values, Fig.3. The relative wave velocity dependencies on pressure, Fig.4,
during loading and unloading are characteristics of a crystal stability before phase transformation
processes.

4 Resonant ultrasound spectroscopy

More recent determinations of elastic constants have used a technique resonant ultrasound
spectroscopy (RUS), Fig.5, in which one measures the natural frequencies of elastic vibration for
a number of a sample’s normal modes and analyses these, along with the shape and mass of the
sample. In the data processing, one must first solve the problem of calculating the natural frequen-
cies (the forward problem), and apply a nonlinear inversion procedure to find the demand elastic
constants from the measured natural frequencies (the inverse problem). The Rayleigh-Ritz method
is usually used for solving the forward problem, [3]. Adopting of finite element method seems to
be very suitable for this purpose. The inverse problem is solved by hybrid Newton and steepest
descents method of nonlinear multidimensional data modelling (Levenberg-Marquart).
The RUS analysis requires that the measurement determine the natural frequencies of a

sample with stress-free boundary conditions. Resonance oscillations are excited by one transducer.
The second transducer receives the amplitude and the phase of the sample response. To obtain
the desired accuracy, one must minimalize sample loading by the transducers. It was proposed
to a rectangular sample which was supported by the transducers at its opposite corners. The
displacements have a maximum in the corners.
The RUS is promising for measurement small specimens (of the order 1mm) of single crystals,

namely for evaluation of elastic properties temperature dependence. We have been testing RUS
technique on glass (isotropic), Si and Cu (cubic) specimens with perspective to elastic properties
measure of each individual phase of studied shape memory alloys.
Glass prismatic specimens of typical dimensions (2.3×2.9×3.8)mm3 were used for error es-

timation of resonance measurement, Fig.6 a. The elastic constants C11 = 82.0407, C12 =
23.5666 (C44 = 29.237)GPa were pre-determined by pulse-echo method and mass density ρ =
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Obr. 3 Configurations for acoustoelastic measurement in the cubic crystal

2.4599g/cm3) was measured by Archymedes technique. Eigenfrequencies were calculated using FEM
system PMD (Package for Machine Design). The 20-nodes solid element was adopted and the mesh
was suggested as 10 × 10 × 10 elements. The first 14 nontrivial values of the natural frequen-
cies fi in the frequency range from 0.3 to 1.0MHz were taken into account. The sufficient numerical
accuracy were shown on deviations from double-dense meshing. The deviation of the experimental
data (fxi) from numeric values (fi) are depended on the magnitude of the measured resonance.
The averaged values (fxi − fi)/fi from four measured specimens also include influence of geome-
trical and dimensional variations, Fig.6 b. The averaged root-mean-square deviation (this way is

defined a functional for minimalization)
√

(fxi − fi)2/f2i is 1.3%. This is reasonable value for the
termination of an inverse procedure iteration.

5 Concluding remarks

This paper shows possibilities of pulse-echo and RUS methods to measure elastic constants of single
crystals. Based on the experience with both techniques, we can make following conclusions :

Pulse-echo methods

• Advantages

– The resulting elastic properties are obtained immediately from the measurement by a simple way
(direct measurement)

– A shape and dimensions of specimen edges are not important

– The measurement of prestressed specimen is not problem (acoustoelasticity measurement)

– Measurement accuracy is possible improve by means of advance digital signal processing

• Disadvantages

– Minimal sample dimension (about 10mm)
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b) Cofiguration type : T
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Obr. 4 Relative changes in the natural wave velocities during applied unidi-
rectional compression; a) L-wave: (4); c = cL = 4.4992mm/µs, qL-wave: (1),
(7); c = cqL = 5.7147mm/µs, b) T-wave: c = cT = 3.6871mm/µs, c) qT-wave:
c = cqT = 1.0859mm/µs.

– The sufficient amount of planparallel cuts with respect to principal material axes (usually more
than one type of specimen) is needed

– The broadband measurement is typically in the range of 10MHz (a wave diffraction from a single
aperture in anisotropic solids may be important)

– Influence, stability and reproducibility of acoustic coupling layer between the transducer and the
specimen

Resonant Ultrasound Spectroscopy

• Advantages

– Small samples are suitable (up to under 1mm)

– All independent elastic moduli are determined from one measurement on one specimen

– The dependence of elastic moduli on an external condition (temperature, humidity, etc.) is
measured by a simple way

– This technique is not only usable to measure of elastic constants, but other application in
nondestructive testing and utilization of non-linear acoustics are investigated

• Disadvantages

– The method is inversive (higher demands to analysis and computation)

– Elastic constant measurements expect high quality of resonances (low material damping)

– The sample geometry and dimensional accuracy have a great influence on results

– The preliminary vibration analysis is necessary to avoid multiply eigenvalues

– Some resonant modes may be underexcitated (”hide” modes)

– The analysis expects stress-free boundary condition. The elasticity stress dependence measure-
ment is a problem.
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