
 
 
 
 

NUMERICAL SIMULATION OF DUCTILE FRACTURE BY MEANS OF COMPLETE 
GURSON MODEL AND COMPARISON WITH EXPERIMENT 

NUMERICKÁ SIMULACE TVÁRNÉHO LOMU POMOCÍ ÚPLNÉHO GURSONOVA 
MODELU A SROVNÁNÍ S EXPERIMENTEM 

Vladislav Laš1, Luboš Řehounek 2, Petr Jaroš3 

This paper is focused on numerical simulation of ductile fracture by utilizing the complete Gurson model. The 
comparison of  numerical and experimental results was carried out on a pre-cracked CT sample made of a highly 
ductile steel 15CH2MFA used for the production of reactor vessels. As the main macro-criterion for agreement with 
experiment served tensile force – crack opening diagram. As the micro-indicators of the capability of the complete 
Gurson model the initiation of the crack growth, as well as crack shape were chosen. Numerical simulations by 
means of the complete Gurson model were conducted in software ABAQUS and in case of  the modified Gurson 
model in software MARC. 

Příspěvek je věnován numerické simulaci tvárného lomu s využitím úplného Gursonova modelu. Jako příklad pro 
porovnání numerické simulace a experimentu byl použit CT vzorek s nakmitanou trhlinou vyrobený z oceli 
15CH2MFA, z které byla vyrobena nádoba reaktoru. Jedná se o vysoce tvárnou ocel. Při porovnání výpočtu a 
experimentu byla sledována závislost síla a rozevření vzorku (COD), dále počátek šíření a tvar trhliny. Numerická 
simulace byla provedena pomocí úplného Gursonova modelu byla provedena v programu ABAQUS, v případě 
modifikovaného Gursonova modelu v programu MARC.  

Keywords Ductile fracture, complete Gurson model, CT specimen, numerical simulation, experiment 

Klíčová slova Tvárný lom, úplný Gursonův model, CT vzorek, numerická simulace, experiment 

Introduction 
 This work extends the scope of the work [4], where the modified Gurson (GTN) model was exploited 
for the numerical simulation of ductile fracture. Several disadvantages of this model are eliminated in the 
complete Gurson (CGM) model. Mainly, the CGM model introduced better implementation of the process 
of void coalescence, which is in GTN model described only by a material constant – the critical void 
volume fraction. It was shown in numerous observations that this coefficient is strongly influenced by the 
stress triaxiality (defined as the ratio of  the mean normal stress and the conventional von Mises equivalent 
stress) which depends on the shape of the specimen. In other words, the process of void coalescence can 
be initiated for same material at different values of the critical void volume fraction. Numerical 
simulations using the CGM model were carried out in software ABAQUS. A free copy of the user 
subrouotine implementing the CGM model was obtained from the author of [8]. The goal of this paper 
was to present the result obtained by using GTN and CGM models compared to the experimental data.     
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Complete Gurson model 
 Material models combining plasticity and damage capable of managing ductile fracture have been 
developing for several decades. The Gurson model (GM) [2], which did not assume the phase of void 
coalescence, was generalized and improved. Tvergaard a Needleman [5] introduced the capability of the 

model to describe the phase of void coalescence by means of the modified void volume fraction 
∗f .  

 By idealizing the true void distribution with spherical voids surrounded by matrix material the 
following yield function can be obtained 
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where eσ  is the conventional von Mises equivalent stress, Mσ  is the flow stress of the matrix material, 
k
kσ  is the mean normal stress and ∗f  is the modified void volume fraction defined in eq. (5). The 

constants 1q  and 2q  were determined by numerical studies conducted by Tvergaard.  

 The process of increasing the void volume fraction in the material is described by two main effects – 
nucleation of new voids and the growth of existing voids. Mathematically this can be expressed in terms 
of the corresponding void volume fraction rates  

grwnucl fff &&& +=        with initial condition ( ) 00 ftf = , (2) 

where nuclf&  is the rate of  void nucleation and grwf&  is the growth rate of existing voids. 

The strain controlled nucleation law  was proposed as 
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where Nf  is the void volume fraction of particles available for void nucleation, Nε  is the mean nucleation 

burst strain, p
Mε  is the equivalent plastic deformation of the matrix material and s is the corresponding 

standard deviation. 

The growth of the existing voids under plastic straining can be written as 

( ) I:1 p
grw ff ε&& −= , (4) 

where  pε&  is the plastic strain tensor and I is the second-order unit tensor. 

The process of void coalescence corresponding to sudden drop of material load carrying capacity is 
described by introduction of the modified void volume fraction ∗f which expresses an artificially 
accelerated void growth 

ff =∗       for     Cff ≤ ,  (5) 
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where Cf  is the critical void volume fraction, Ff  is the void volume fraction at final failure and the 

constant ∗
uf  is defined as 

1

1
q

fu =∗ . 

 To sum up, for the description of the modified Gurson model the parameters ,,,, 021 Cffqq  

NNF fsf ,,, ε  are needed. The recommended values of 1q , 2q  are 5.11 =q , 12 =q , as suggested by 
Tvergaard after conducting a series of numerical studies. The remaining parameters must be determined 
by fitting numerical simulations onto experiments.  

 However, it is questionable to assume Cf  is a material constant. Numerical studies clearly 

demonstrated strong dependence of Cf  on 0f , as well as on the shape of the analyzed part. Hence, Cf  is 
not a material constant, but becomes a field quality. 

 So far, only homogeneous modes have been considered in deriving the Gurson model. As argued by 
Thomason in [6], the localized deformation mode of void coalescence should be treated differently. He 
suggested that the localized deformation mode can be described by the so-called plastic limit  load model 
(PLL). The stage of void coalescence depends on the competition between the two deformation modes. In 
the early stage of deformation, the voids are small and it is easier for the material to follow the 
homogeneous deformation node. With the advance of the plastic deformation and the increase of the void 
volume fraction, the stress required for localized deformation decreases. When the stress for localized 
deformation is equal to the stress for homogeneous deformation, the void coalescence will occur. The 
condition for void coalescence by internal necking of the intervoid matrix can be written as 

LH
11 σσ = , (6) 

where H
1σ  is the homogeneous maximum principal stress and L

1σ  is the maximum principal stress of the 
localized area which represents the micro-capacity of a voided material to resist the localized deformation. 
The Thomason PPL criterion for void coalescence in 3D cases [8] can be written as 
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where Mσ  is yield stress of the matrix material, r is the void space ratio defined as 
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where 3,2,1ε  are principal strains and 2.1,1.0 == βα  are constants fitted by Thomason.  

 It is important to note that plastic load limit is strongly dependent on the sample geometry. For 
a material without voids, the plastic load is infinite. At the beginning of plastic deformation of a void-
containing material , the void dimensions are very small and the corresponding plastic limit load is very 
large. When a void starts to grow, the plastic limit load decreases, which indicates that the possibility of 
plastic localization increases. The homogeneous deformation mode will be terminated once the localized 
mode of deformation becomes possible. It was reported after systematic verifications  that the complete 
Gurson model is very accurate, in particular, for small initial void volume fractions. 



Determination of material parameters for GTN and CGM models 

 In the previous section the parameters of GTN model, i.e. NNFC fsfffqq ,,,,,,, 021 ε , were 
introduced. In case of CGM model, the process of void coalescence is controlled by Thomason plastic 
limit load model. Hence, the knowledge of the critical void volume fraction Cf  is not required as it arises 
from equations (7). Also, the value of Ff  is not required either. For most materials, the value of the void 
volume fraction at final fracture Ff  should not be less than 0.15.  Based on the observations, the 
following approximate equation can be introduced,  

0215.0 ff F += . (8) 

 As the parameters  1q  and 2q  are often set to 5,11 =q  and 12 =q , there are only four parameters 
NN fsf ,,,0 ε  left to determine. One of the possibilities is to fit the results of numerical simulation of the 

fracture in round notched bars onto experimental data. The advantage of this procedure is that the 
numerical simulation can be carried out on an axisymmetric FE model. So, the whole fitting process is far 
less time-consuming than in case of full 3D FE models.  

 In this work the round notched bars with dimension from Fig. 1 were used for fitting material 
parameters. The material was steel 15CH2MFA, which is widely used for the production of reactor 
vessels. The comparison of the experimental and numerical F - d∆  curves is shown in Fig. 2. This 
satisfactory agreement was achieved with the parameters presented in Table1. 

 

  

                 a) shallow notch                 b) sharp notch 
Fig. 1:   Dimensions of the notched bars 

  

                   

 

Notched bars  
1q  2q  0f  Cf  Ff  Nε  s  Nf  

shallow, sharp  1,5 1,0 0,0001 0,11 0,25 0,1 0,1 0,01 

Table 1: Parameters of the GTN model 
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a) shallow notch b) sharp notch 

Fig. 2:   Tensile force – diameter change (F - d∆ ) curves 

Numerical simulation of ductile fracture of CT sample 
 To simulate ductile fracture of a CT sample the complete Gurson model was employed. The 
dimensions of the pre-cracked specimen with fatigue crack of the length mma 18=  are shown in Fig. 3.  
The material of the specimen was high-strength steel 15CH2MFA with yield strength MPaK 660=σ . 
This steel exhibits extensive ductility. The finite element model of the CT sample is depicted in Fig. 4. 
Because of the presence of two planes of symmetry, only a quarter of the sample was numerically solved 
(see Fig. 5). Material parameters were entered from Table 1. 

 

 

 

 

 

 

 

 

 

 

 

  

 

   Fig. 3:   CT sample                Fig. 4:   Computational FE model 



 The shape of the propagated crack in one quarter of the CT sample is shown in Fig. 5. It can be seen 
that the crack propagated rather deep into the sample but has not reached the boundary of the specimen.  

 
Fig. 5: Visualization of the crack shape at COD = 3.5 mm 

 

 

a) beginning of the crack propagation ( Cf =0.02 ) b) propagated crack at COD=3.5mm ( Cf =0.08 )

Fig. 6: Comparison of the value of Cf  during crack propagation 

 

 From the conducted simulations it is evident that the value of the coefficient Cf  changes not only 
with the shape of the analyzed part but also during the process of crack propagation. It reflects the actual 
state of triaxiality at the crack tip, as can be seen in Fig. 6. Fig. 6a shows the beginning of the crack 
propagation when Cf  = 0.02. As the crack grows in the longitudinal direction, the value of Cf  increases, 
too (see Fig. 6b). This effect can be explained by weakening of the „constraint effect“,  by which void 
growth is enabled. 

Planes of symmetry 



 

      In Fig. 7 can be seen the tensile force – crack opening (F-COD) curves obtained experimentally and 
numerically by using both CGM and GTM models. It can be noticed that in case of using CGM the 
numerical results correspond with the experiment very well. It is believed that this correspondence is 
enabled by the capability of CGM model to determine Cf  automatically by utilizing the Thomason plastic 
limit load model. 

 To compare the capability of both models, Cf  was first determined by fitting the material constants 
on experimentally measured  F- d∆  curves for notched bars. Regardless the geometry of the notched 
samples, the best results were obtained for the value of Cf  equal to 0.11. This value was then used for the 
numerical simulation of crack opening of CT sample (see Fig. 7). However, better agreement with the 
experiment was reached for the value of Cf  set to 0.06. This finding can be explained by analyzing the 

results of CGM model. Here, the value of Cf  changed between 0.02 and 0.08 (see Fig. 6). 

  

 
Fig.7: Tensile force – crack opening (F-COD) curves 



 

Conclusion 
 The aim of this work was to carry out a numerical analysis of ductile fracture which would show 
a good correspondence with reality. With the aid of CGM it turned out that the value of the coefficient Cf  

changes not only with the shape of the analyzed part but also during the process of crack propagation. This 
fact influences the shape of the fracture area, the stress state and distortion during the crack propagation. 
From the above-mentioned it is evident that to obtain realistic results of numerical simulation of ductile 
fracture it is necessary to use the CGM model. 

 The experience with the numerical simulation of crack propagation for ductile fracture shell be 
applied for numerical determination of J-R curves. This means that instead of complicated and expensive 
series of experiments it should be sufficient to conduct only few experiments (to obtain the stress-strain 
characteristic of the material and several F - d∆  diagrams) which are necessary for the determination of 
the parameters of the CGM model. The J-R curves could be determined numerically afterwards. 
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