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MODELOVÁNÍ A VYHODNOCENÍ DAT SILOVÝCH SNÍMAČŮ
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A multiaxial transducer that enables measuring whole load force vector is recently not aviable on a commercial 
market. Point is to introduce construction of a force transduces, that would provide measurement of full force and 
momentum load. To fullfill this requirement a special testing beam shouldered by a number of strain ganges is used. 
Despite a common distribution of the strain gages over the measuring device it is possible to count a full vector of 
force and momentum load. The measuring procedure consist of two independent steps that we are presenting a 
following article. In a final data processing total least squares method is being used. 
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Introduction 
Multiaxial transducers of mechanical force quantities are not included in the usual product range 
of com-panies manufacturing force sensors. Only uniaxial transducers of forces and moments are 
commonly available (see the catalogues of top world companies, which are selling their products 
on our market, i.e. HBM-HBP, Devetron, Vishay). 

Demands on more complex sensors are usually mat-ter of custom design and manufacturing. 
Thus their price is generally substantially higher. Multiaxial transducers are much more complex 
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as regards de-mands for their basic mechanical 
construction. The measuring of a particular 
deformation field on the construction is the basic 
principle of their use. The design of a transducer 
sets broad range of require-ments, which have to 
be fulfilled. These are: compli-ance of bodies of 
respective sensors with strength criteria, 
optimization of range of measuring circuit signal 
sensitivity and stability guarantee of sensor 
parameters. Complexity of demands concerning 
the  

design of multiaxial transducers leads towards 
opti-mization techniques, because of the necessary 
crite-ria, which have to be fulfilled, are of 
different char-acter. This is the prime reason, why 
the multiaxial sensors are not commonly sold. 

High-strength steel with low material hysteresis 
and closely fitting the Hooke’s law are used for 
bodies of sensors at most. Modern materials based 
on a basis of laminated composites also show 
similar qualities, moreover with another important feature, which is stiffness controllability in 
different directions. Elastic response of sensor’s body to a load is measured by resistance strain 
gauges, alternatively by more sensi-tive semiconductor ones. Any measurement set-up requires to 
have implemented a compensation of temperature effect on force response of the sensor. 

Design of transducers 

A multiaxial transducer should be produced from a material that fulfills the Hooke’s Law as 
good as possible so that the principle of superposition can be exploited. Further it is supposed 
that a identification of a force vector that loads a reference place   (Fig. 1) is realized through 
measuring of a strain   on the transducer using strain gages. A force vector   is composed of three 
force Fx, Fy, Fz and three momentum Mx, My, Mz components who are mutually independent. 
In case of a beam transducer there are several simple computing theorems that enable us to a state 
of stress, respectively a strain distribution in case of single force or momentum loads. These theo-
ries are valid also for a superposition of such simple loads and by their application we may 
produce an equation system of physical 
constrains that can im-prove the 
accuracy of measured data (data 
reconcilia-tion).  

Ordering of directions of the strain 
gages that are used for measuring on 
the beam is analyzed in [2] and for a 
typical example of a shaft with circle 
cross-sectional area it is possible to 
place strain gages, which identify 
dominant components of shifting force 

Fig. 1. Forces and moments marks 

 

Fig. 2. Position of strain gages used for torsion and shaft 
measuring 



and torsion moment according to scheme (Fig. 2). Components of the bending moments impact 
the greatest values of strain in the direction of the shaft axes, what is marked on scheme (Fig. 3). 

Identification of the measuring component 

In following chapter a it is described a identification process of measuring device used or 
measuring of a force load. Calibration of the device must be made before the measurement, as the 
calibration of the device is necessary.  

On the schemes (Fig. 1, Fig. 2, Fig. 3) there are marked several strain gages (sensors) whose 
data are further preceded. Each of the sensors reacts reflects every kind of load that is measuring 
device exposed to. As device can be practically exposed to six independent kinds of load, we 
assume that the final value of the sensor iε  is a linear combination of individual contributions 
that are done by the individual loads  

 xixixiziyixii McMcMcFcFcFc 554321 +++++=ε , (1) 

where kF  denotes a force in the directions of the coordinates, kM  denotes a momentum to axis 
x , y  and z  and finally ikc  marks the sensitivity of i -th sensor to the k  -th variable. Supposing 
m  measuring sensors there are m  linear equations like (1) that contain 6×m  unknown 
coefficients ikc . We formulate (1) in matrix form like 
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and for all measuring places it form an equation system  
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The sensitivities ikc  are constant time invariant values that need to be identified by an 
experiment. To identify these values we need to load a measuring device by well-known forces 
and moments independently one by one. Suppose we have an independent loading force yF  and 
all other influencing powers and moments are zero. In that case we measure a value on all the 
sensors denoted like

yFε . Putting this case into equation (3) yields 
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Fig. 3. Position of strain gages used for measuring of bend and tension 

Multiplication (4) selects second column of the matrix [ ]ikc=C  so that we can rewrite equation as 
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The magnitude of load yF  is well known with its relative error
yFδ . Sensors values 

yFε  evoked 

by load yF  are known with their relative error
yFε

δ . Sensitivities to yF  can be reached together 

with their relative like 
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When dividing we have to find relative error 2iδ  of 2ic  from relative errors of the dividend and 
divider like 

 ( ) ( )22
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To get all the coefficients of matrixC , we have to make six measurements caused each time just 
by one isolated force or momentum. Product of this is a sensitivity matrix together with matrix δ  
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Fig. 3



of the relative uncertainty of individual matrix components. True component of matrix C  
belongs than certainly to interval 

 ( ) ( )( )ijijijijij ccc δδ +−∈ 1,1) . (7) 

Measuring the unknown force  

If we impose the specimen to the unknown combination of forces and applied moments it 
evokes a sensor reaction denoted by uε  with relative uncertainty εδ . Unknown vector of forces 
and moments x  equal to  
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that has n  components must according to (3) fulfill the equation  

 uεCx = . 

To provide all the unknown forces we have to have at least n  identified sensors. To test the 
existence of solution rank of matrix C  must be equal  

 ( ) nrank =C . 

On the other hand number of sensors m  can be larger than n . In that case we have more 
equations than variables. As all the sensitivities are produced by the identification its clear that 
the Frobenius law [1]  

 ( ) [ ]( )urankrank εCC ,=  (9) 

is not fulfilled as the vector uε  is linearly independent on columns of matrix C . As the 
components of matrix C  and components of vector uε  are all known imprecisely, we should 
solve the problem using the Total Least Squares algorithm (TLS) [1]. This algorithm solves the 
problem formulated like 
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where C
)

 is more concrete matrix C  and ε)  is more appropriate measured value, that fulfills a 
Frobenius law (9). If we find a matricesC

)
 and ε)  than unknown vector *x  can be found by 

solving a equation system 

 εxC * ))
= . (11) 



Solution of the problem can be found in [1, page 39]. The minimization of the Frobenius norm of 
matrix difference (10) can be performed using singular value decomposition (SVD) [1]. We 
perform a SVD of original matrices 

 [ ] 1nn21u     +≥≥≥= σσσσ L,svd VΣUεC, . 

The minimum difference matrix  

 [ ] [ ] [ ]εCεCεC ))
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can be according to [1] found like 

 [ ] T
111, +++=∆∆ nnn uvεC σ , 

where 1+nv  and 1+nu  are 1+n -th columns of the matrices V  and U . Final solution of the 
equation system (11) can be found from the original system like 

 ( ) un εCICCx* T
1

T
++= σ . (12) 

Performing this solution according to (12) satisfies uncertainty requirements, as the possible 
mistake is distributed into matrix C  as well as into vector uε . 

Our future goal is to find a statistical procedure, that would find a gross error in the set of 
measurements and so that to acquire which of the sensors has a possible malfunction.  
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