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Abstract 

In this paper a universal constitutive equation with internal damping is presented for materials 

under dynamic and cyclic loadings. The model adapts the idea of a spring dashpot system connected 

in parallel for continuum, utilizing appropriate deformation measures, which are independent of rigid 

body motion and thus it enables more precise numerical simulation of real material behaviour 

resulted from internal damping. In the presented work the model application is shown using cyclic 

loading and infinitesimal strain/deformation formulation based finite element analysis with extended 

NoIHKH material model for cyclic plasticity of metals. 

Abstrakt 

Autori v prekladanom článku prezentujú univerzálnu konštitutívnu rovnicu s vnútorným 

tlmením pre dynamicky a cyklicky zaťaţené materiály. Model adoptuje myšlienku paralelne 

zapojenej pruţiny a tlmiča pre kontinuum vyuţitím vhodných mierok deformácie, ktoré sú nezávislé 

na tuhom pohybe telesa a preto umoţňuje presnejšiu numerickú simuláciu správania sa skutočného 

materiálu zapríčineného vnútorným tlmením. V prezentovanej práci autori ukáţu pouţitie modelu pri 

cyklickom zaťaţení metódou konečných prvkov s opisom pomocou nekonečne malých pretvorení 

a rozšíreným NoIHKH materiálovým modelom pre cyklickú plasticitu kovov. 

 1 INTRODUCTION 

An engineering construction during its operation has to withstand various loadings; the 

significant part of which can be characterized as dynamic or cyclic. To model properly the behaviour 

of such a construction internal damping of its material has to be taken into account. According to the 

authors’ best knowledge in the contemporary literature there is no universal mathematical model 

proposed to model the internal damping of a construction material. The lack of such a model can lead 

to spurious numerical behaviour under dynamic and cyclic loadings.  

 2 THEORY BACGROUND 

Considering the analogy between continuum and a spring dashpot system connected in 

parallel, where the spring force and the damping force depend on the relative displacement and 

relative velocity of the spring ends, the Cauchy stress tensor of a material with internal damping can 

be expressed using elastic-plastic associative plasticity, incremental infinitesimal strain/deformation 

formulation [1],[4] and the extended NoIHKH material model [2] as 
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Equations (2) and (3) represent the elastic part of the Cauchy stress tensor (1) in elastic 

loading/unloading conditions and in plastic loading conditions. Equation (4) denotes the damping part 

of the Cauchy stress tensor. Equations (5)-(7) define the yield surface and the evolution equations of 

the extended NoIHKH material model [2], namely the NoIH rule [3] for isotropic material hardening 

(6) and the NoKH rule [3] for kinematic material hardening (7). , , ,p p
ε ε d d  denote the infinitesimal 

strain tensor, the plastic part of the infinitesimal strain tensor, the strain rate tensor and the plastic part 

of the strain rate tensor. , , , ,p p
Σ X   stand for the deviatoric stress tensor, the back stress tensor, 

the accumulated plastic strain, the accumulated plastic strain rate and the plastic multiplier value. The 

remaining symbols denote constant material parameters. The fourth order cyclic material tensor 
cyclC  

and the damping tensor 
dampC  were formally constructed in the same way as the elastic material 

tensor using two independent variables ,cycl cyclE  and ,damp dampE , which ensures isotropy 
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 3 NUMERICAL EXAMPLE 

As a numerical example a solid bar, size1 m  1 m  3 m  was studied applying cyclic tension. 

One end of the bar was fixed and the second end underwent a prescribed axial deformation 

determined by a sine function and amplitude 2.5/3.5mm corresponding to elastic/plastic loading, 

while it was guided in the remaining two directions. In the numerical experiment one loading cycle 

was realized using 15 degree angular increments in each time step. Cases with and without internal 

damping were studied, using 0.04Hz , 4.16Hz  and 41.66 Hz  loading frequency corresponding to 

1.0 s , 0.01 s  and 0.001 s  time step values. As a simplification all material parameters were considered 

to be constant. Table 1 contains the used material properties. Since no experimental tests were carried 

out, some of the used plastic material properties are considered to be informative.    

Tab. 1 Material properties 

 [Pa]E   [Pa]cyclE   [Pa s]dampE   [-]cycl damp
  [Pa]y

 

112.1 10  52.1 10  0.0 / 82.1 10  0.3  82.0 10  

 [Pa]Q   [-]b   [-]  0  [-]   [-]  

75.0 10  3.0  20.0  10.0  10.0  
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 4 NUMERICAL RESULTS 

Figures 1-2 show the axial deformation, Von Mises stress and the accumulated plastic strain 

distribution in one longitudinal cross section of the bar at maximum tension corresponding to the 

plastic loading case with internal damping using 0.001 s  time step. 

 
  Fig. 1 Maximum axial deformation in one longitudinal cross section of the bar 

  

Von Mises stress distribution Accumulated plastic strain distribution 

Fig. 2 Von Mises stress and accumulated plastic strain in one longitudinal cross section of the bar 

Axial deformation versus Axial stress at selected Nodes
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Fig. 3 Hysteresis loops at nodes N31, N149 in elastic loading conditions corresponding to various 

time steps 
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Axial deformation versus Axial stress at selected Nodes
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Fig. 4 Hysteresis loops at nodes N31, N149 in plastic loading conditions corresponding to various 

time steps 

Figures 3-4 show the axial deformation versus axial stress curves at selected nodes at the bar 

end N30 and in its middle part at node N149. As can be seen in figure 3, there is no energy 

dissipation in elastic loading without damping, the system is conservative and the axial deflection 

versus axial stress curve is linear. Applying internal damping hysteresis loops were created and the 

material curve no longer could be described as linear. Figures 3 and 4 imply that the area of the 

hysteresis loop is proportional to the deformation rate, i.e. the higher the deformation rate the greater 

the loop area as well as the amount of the dissipated energy and the resistance against deformation. 

Also, in limiting state, as the deformation rate approaches zero, the effect of internal damping 

vanishes. 

 5 CONCLUSIONS 

In this paper a universal constitutive equation with internal damping was presented for 

materials under dynamic and cyclic loadings. The model was capable to dissipate energy and damp 

the system in both, elastic and plastic loading conditions.  Since the damping is independent of rigid 

body motion, not only in dynamic and cyclic analyses will the presented model result more accurate 

numerical simulations, but also in coupled-thermal structural calculations. 
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