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Abstract: Exotic algebras such as the max-plus semiring, or the tropical semirings, have been invented many 
times in various fields: discrete event system theory, communication networks as well as timing analysis of 
digital circuits. Despite this apparent profusion, there is a set of common basic results and problems, which 
seems to be useful in most applications. In recent research the relevancy of discrete event systems (DES) steadily 
increases. In order to handle DES the introduction of a DES-system theory is useful. This article outlines the 
DES-system theory and shows an algorithm for an efficient calculation of the optimal control in dioids. 

1. Introduction 

Tropical algebra, also called “min-plus” or “max-plus” algebra, is a relatively new 
topic in mathematics that has recently caught the interest of algebraic geometers, computer 
scientists, combinatorists, and other mathematicians. According to Andreas Gathmann, 
tropical algebra was pioneered by mathematician and computer scientist Imre Simon in the 
1980s but did not receive widespread attention until a few years ago. Interestingly, the title 
“tropical algebra” is nothing more than a reference to Simon’s home country - Brazil. 

The tropical semi-ring, which is the basis of this problem-solving tool and our major 
object of study, is formed by replacing the standard addition operation with the minimum 
function and replacing multiplication with addition. Although many difficult problems can be 
translated into simpler tropical problems, even these simpler problems can be difficult if we 
do not understand the tropical algebraic system. Since tropical algebra is so new, several 
things about it are unknown. Our purpose in studying it, then, is to understand it better, since 
the more we understand about the mechanics of the tropical algebraic system, the more 
effective this tool becomes.  

Due to the fact that many interesting results in common system theory are based on 
adapter mathematical description of the system, the development of a DES-system theory was 
mandatory. After the definition of the corresponding terms the problem of an efficient 
function calculation arises. This article presents an effective way for the calculation of the 
star-operator. As already mentioned, an effective computation of the star-operator may be 
necessary in order to determine the transfer function of a given DES. 

The basics of dioid theory are given and applied to DES-system theory. The need of an 
effective calculation of the star-operator is motivated. As central result a theorem is proved, 
which allows the solution of an affine equation being slightly less elaborate than matrix 
multiplication. Finally the relative effort in comparison to the multiplication is visualized. 
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2. Basics of Dioid-Theory 

This section will introduce the definition of a dioid. The considerations in this section 
will not present proofs but restrict to simple properties. This is done due to the fact that only 
basic algebraic knowledge is necessary in order to understand the following simplifications. 
Detailed examinations and characterizations can be found in [1], [2], [3] and [4]. First the 
algebraic properties of a dioid are defined: 

2.1 Definition (Dioid) 

A dioid is a set  endowed with two inner operations  and , called addition and 
multiplication, such that  is associative, commutative, idempotent and has a zero 
(denoted as );  is associative and has a unit (denoted as e);  is absorbing for  
( ) and  distributes over . In most cases the multiplication sign is 
omitted. 

A matrix dioid  is defined on grounds of a dioid  by: 

  (1) 

  (2) 

In [4], [5] it is shown that an algebraic structure possessing an idempotent, associative 
and commutative inner operation can be furnished with an order relation. The induced order  
is given by . Such an ordered set may be completed adding 
the upper bound of each subset, resulting in a complete dioid: 

2.2 Definition (Complete dioid) 

A dioid is complete, if it is closed for upper bounds 

  (3) 

and the distributivity extends to infinite sums. Sums with an uncountable amount of elements 
are well defined as upper bounds of certain subsets. 

In complete dioids the solution of an affine equation can be obtained by algebraic 
calculations. For this purpose the star-operation  will be useful. Therefore an element of   to 
the power of n  is recursively defined by 

  (4) 

Through this the star-operation 

  (5) 

is defined, which allows the characterization of solutions of affine equations: 

2.3 Theorem 

In a complete dioid the following statements concerning affine equation  
hold true: 

1.  is the least solution of . 

2. For each solution , the property  is valid. 



3. Affine Equations in the DES-Theory 

This section justifies the necessity of an efficient calculation of the star-operator. For 
this purpose, results are presented demonstrating the description of DES by means of 
algebraic methods. For the sake of simplicity these results are not derived in a closed manner, 
but merely stated as facts. The justification can be found in [1], [5] or [4]. 

In [4] it has been shown, that synchronization-graphs, a special kind of petri-nets, can 
be described by state space equations: 

 

 

Hereby the state variables xi(k) represent the instant in time at which the i-th transition 
of the petri-net is fired for the k-th time. 

With the -transformation of an signal x(k) as an analogy to the z-transform,  

 , (6) 

signals are transformed into an image domain. The delay of a signal corresponds to the 
multiplication with the formal operator in the image domain: 

 . (7) 

In terms of this image domain calculations are simplified and the state space equations 
become 

, 

. 

Applying theorem 2.3 the resulting input-output-behavior is given by: 

 . (8) 

Therefore the input-output behavior of the system is determined, calculating the right 
hand bracket. This computation requires knowledge of the matrix  and therefore an 
effective calculation of this term is essential. 

4. Calculation of the Star-Operator 

As proved in [2], the calculation of the star-operation for a 2  2-matrix can be 
reduced to manipulation of the (scalar) matrix coefficients: 

4.1 Theorem 

In  the following calculation of the star-operation takes place: 

. 

At first sight this solution seems quite circumstantial. In fact, the calculation is 
significantly simplified. Considering the terms of matrix  it becomes obvious that the 
elements can be recursively computed using the similarities between the elements. 



4.2 Theorem 

The star-operation for a 2  2-matrix can be calculated within two scalar additions, 
six scalar multiplications and 2 scalar star-operations. 

Using the latter theorem, the computation of matrices of higher dimensions is ascribed 
to sub-matrices of the half dimension. This is somehow similar to the derivation of the FFT 
out of the DFT. For this purpose the similarity between two matrix dioids is needed: 

4.3 Theorem 

Dioids  and  are isomorph. 

Due to this theorem the calculation of matrices of higher dimensions is reduced to 
calculations with matrices of smaller dimensions. 

4.4 Theorem 

For , the star-operation can be calculated with less effort than a 
matrix multiplication of the same dimension. 

 

Figure 1: Relative effort for the calculation of the star operation 

5. Application to transportation networks 

We are interested in transportation systems and more particularly in bus networks. At 
first a max-plus linear model of these systems is proposed. The behavior of such systems is 
controlled by a timetable. Timetables settings are a part of an optimization. A bus network can 
be modeled as a state representation in  endowed with the max 
operator as sum and the classical sum as product with the greatest element . Then the 
resulting dioid is complete. 

A transportation network can be modeled by: 

, 

, 



in which  is a vector. Matrix A is defined such as  where  corresponds to the 
travelling time from stop j to stop i. 

The timetable is represented by input vector  and entries of matrix B are such as  
if timetable must be respected at i,  otherwise. We consider constraints which can be 
formulated as an implicit inequality over state vector x. A relevant goal for the control is to 
delay as much as possible the input events, i.e. to compute the greatest control vector u. Then 
the synthesis of the optimal control can be formulated as the computation of the greatest fixed 
point of a mapping  f  by the following iterative computation: 

. 

It can be proved that this computation converges in a finite number  of iterations 
and  is the optimal control, i.e. the greatest solution of  f  with . 

The iterative computation has been implemented with the C++ library libminmaxgd in 
[5]. 

6. Summary 

This article presents the basics of an efficient calculation for the star-operation in 
arbitrary dioids. After the motivation of the need of such considerations the effort is 
determined by a given algorithm for the simplification of the computations. As central 
theorem of this article it can be proofed that the relative effort of a star-operator is less than 
the multiplication of matrices of the same dimension. As a consequence the use of the star-
operator is no time-critical part of the determination of a DES’s behavior. 

We have presented a new method to compute a control problem in max-plus linear 
system theory. Using results on monotone mappings on complete dioids any constraint can be 
expressed as an implicit inequality involving the state vector. We also prove the convergence 
of the computation. However, it must be noted that the obtained controllers are not necessarily 
minimal. We apply this method to the timetable synthesis of transportation systems. Future 
works should refine the control method as well as the model for the case of uncontrollable 
transitions and non linear constraints.  
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