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Abstract: Exotic algebras such as the max-plus semiringhertropical semirings, have been invented many
times in various fields: discrete event system theoommunication networks as well as timing anialyesf
digital circuits. Despite this apparent profusitiere is a set of common basic results and problevhgh
seems to be useful in most applications. In recesgarch the relevancy of discrete event systefBS)Bteadily
increases. In order to handle DES the introductiba DES-system theory is useful. This article ioet the
DES-system theory and shows an algorithm for aniefit calculation of the optimal control in dioids

1. Introduction

Tropical algebra, also called “min-plus” or “maxdpt algebra, is a relatively new
topic in mathematics that has recently caught titerest of algebraic geometers, computer
scientists, combinatorists, and other mathematciakccording to Andreas Gathmann,
tropical algebra was pioneered by mathematician camdputer scientist Imre Simon in the
1980s but did not receive widespread attentionl anfew years ago. Interestingly, the title
“tropical algebra” is nothing more than a referetw&imon’s home country - Brazil.

The tropical semi-ring, which is the basis of thieblem-solving tool and our major
object of study, is formed by replacing the staddaddition operation with the minimum
function and replacing multiplication with additioAlthough many difficult problems can be
translated into simpler tropical problems, evers¢hsimpler problems can be difficult if we
do not understand the tropical algebraic systemceStropical algebra is so new, several
things about it are unknown. Our purpose in stuglyinthen, is to understand it better, since
the more we understand about the mechanics ofrdpecél algebraic system, the more
effective this tool becomes.

Due to the fact that many interesting results imgwn system theory are based on
adapter mathematical description of the systemdéwelopment of a DES-system theory was
mandatory. After the definition of the corresporgliterms the problem of an efficient
function calculation arises. This article presestseffective way for the calculation of the
star-operator. As already mentioned, an effectiompmutation of the star-operator may be
necessary in order to determine the transfer fanaf a given DES.

The basics of dioid theory are given and applieDES-system theory. The need of an
effective calculation of the star-operator is mated. As central result a theorem is proved,
which allows the solution of an affine equation nggislightly less elaborate than matrix
multiplication. Finally the relative effort in corapson to the multiplication is visualized.
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2. Basicsof Dioid-Theory

This section will introduce the definition of a @lo The considerations in this section
will not present proofs but restrict to simple pedges. This is done due to the fact that only
basic algebraic knowledge is necessary in ordemtterstand the following simplifications.
Detailed examinations and characterizations cafobed in [1], [2], [3] and [4]. First the
algebraic properties of a dioid are defined:

2.1 Definition (Dioid)

A dioid is a se® endowed with two inner operatioi¥e and &2, called addition and
multiplication, such that@ is associative, commutative, idempotent and hager
(denoted ass); & is associative and has a unit (denoted as =)s absorbing for&
(e®a=a®es=2¢) and @ distributes over®. In most cases the multiplication sign is
omitted.

A matrix dioid2"*" is defined on grounds of a dioiZ by:
(A®B),, =A,®B, ik=1,.,N (1)
(A®B), =@, (4,®8B,,) ik=1..N 2)

In [4], [5] it is shown that an algebraic structyr@ssessing an idempotent, associative
and commutative inner operation can be furnished am order relation. The induced orégr
isgivenbya =be<= a@b=>b ab €D Such an ordered set may be completed adding
the upper bound of each subset, resulting in a &mdioid:

2.2 Definition (Complete dioid)

A dioid is complete, if it is closed for upper bdan
a; ED, i€l =@ aq; €D, (3)

and the distributivity extends to infinite sumsmSuvith an uncountable amount of elements
are well defined as upper bounds of certain subsets

In complete dioids the solution of an affine eqmatcan be obtained by algebraic
calculations. For this purpose the star-operationll be useful. Therefore an element®fto
the power oh is recursively defined by

a’=e , al=a , a"=a"1Da (4)
Through this the star-operation
a* =@ =,a" (5)
is defined, which allows the characterization dtisons of affine equations:

2.3 Theorem

In a complete dioid the following statements conicey affine equation: = ax @ b
hold true:
1. a” & bis the least solution of = ax @& b.

2. For each solutiorx, the propertyt = a*x is valid.



3. Affine Equationsin the DES-Theory

This section justifies the necessity of an effitiealculation of the star-operator. For
this purpose, results are presented demonstratiagdescription of DES by means of
algebraic methods. For the sake of simplicity thesellts are not derived in a closed manner,
but merely stated as facts. The justification carfidund in [1], [5] or [4].

In [4] it has been shown, that synchronization-gsa@ special kind of petri-nets, can
be described by state space equations:

x(k) = Ax(k— 1) ® Bu(k),
y(k) = Cx(k) @ Du(k).

Hereby the state variablegk) represent the instant in time at which b transition
of the petri-net is fired for thieth time.

With they-transformation of an signalk) as an analogy to the z-transform,
M{x(k)} =@ x(k)y", k € T, (6)

signals are transformed into an image domain. Tdélaydof a signal corresponds to the
multiplication with the formal operatarin the image domain:

rx(k)) = Xx() = rix(k— 1)} =yX(y). (7)

In terms of this image domain calculations are $ified and the state space equations
become

X(y) = AyX(y) @ BU(y),
¥(y) = CX(y) @ DU(y).
Applying theorem 2.3 the resulting input-output-aeior is given by:
Y(y) = (Cl[AY]"B @ D)U(y). (8)

Therefore the input-output behavior of the systemdatermined, calculating the right
hand bracket. This computation requires knowledfy¢he matrix [Ay]* and therefore an
effective calculation of this term is essential.

4. Calculation of the Star-Oper ator

As proved in [2], the calculation of the star-opiena for a 2 x 2-matrix can be
reduced to manipulation of the (scalar) matrix Goents:

4.1 Theorem

In D*** the following calculation of the star-operatiorkés place:
_fa b . _{fa" @a'blca’b @B d)ca® a*blca’b @ d]”)
M= (c d)ﬁM _( (ca*b @ d)*ca* (ca’b@® d) /
At first sight this solution seems quite circumsi@n In fact, the calculation is

significantly simplified. Considering the terms ofatrix M* it becomes obvious that the
elements can be recursively computed using thdasitres between the elements.



4.2 Theorem

The star-operation for a Z 2-matrix can be calculated within two scalar adutits,
six scalar multiplications and 2 scalar star-opecas.

Using the latter theorem, the computation of masiof higher dimensions is ascribed
to sub-matrices of the half dimension. This is sowe similar to the derivation of the FFT
out of the DFT. For this purpose the similarityvoeén two matrix dioids is needed:

4.3 Theorem

Dioids D ™** and (D™*")*** are isomorph.
Due to this theorem the calculation of matriceshigher dimensions is reduced to
calculations with matrices of smaller dimensions.
4.4 Theorem
For M € D"™",n = 2%, the star-operation can be calculated with ledsréfthan a
matrix multiplication of the same dimension.
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Figure 1. Relative effort for the calculation of the stareogtion

5. Application to transportation networks

We are interested in transportation systems anc mparticularly in bus networks. At
first a max-plus linear model of these systemsragppsed. The behavior of such systems is
controlled by a timetable. Timetables settingsaapart of an optimization. A bus network can
be modeled as a state representatiorZjn, = ZU{—o0, +co} endowed with the max

operator as sum and the classical sum as prodticttiae greatest elemertce. Then the
resulting dioid is complete.

A transportation network can be modeled by:

x(k) = Ax(k—1) ® Bu(k),
y(k) = Cx(k),



in whichx(k) is a vector. MatriA is defined such a4,;; = a;; wherea,; corresponds to the
travelling time from stop to stopi.

The timetable is represented by input veat(k) and entries of matriB are such aB,; = e

if timetable must be respectediaB,; = = otherwise. We consider constraints which can be
formulated as an implicit inequality over state teex. A relevant goal for the control is to
delay as much as possible the input events, i.entoute the greatest control veatorThen

the synthesis of the optimal control can be formadas the computation of the greatest fixed
point of a mapping by the following iterative computation:

Uy = —09, Uy = fluy).

It can be proved that this computation convergesfinite numbeik = N of iterations
andu,, is the optimal control, i.e. the greatest solutdrf with u = f(u).

The iterative computation has been implemented thighC++ library libminmaxgd in

[5].
6. Summary

This article presents the basics of an efficieritudation for the star-operation in
arbitrary dioids. After the motivation of the need such considerations the effort is
determined by a given algorithm for the simplifioat of the computations. As central
theorem of this article it can be proofed that thlative effort of a star-operator is less than
the multiplication of matrices of the same dimensiAs a consequence the use of the star-
operator is no time-critical part of the determioatof a DES’s behavior.

We have presented a new method to compute a cqrsblem in max-plus linear
system theory. Using results on monotone mappingsomplete dioids any constraint can be
expressed as an implicit inequality involving thates vector. We also prove the convergence
of the computation. However, it must be noted thatobtained controllers are not necessarily
minimal. We apply this method to the timetable bgsis of transportation systems. Future
works should refine the control method as well fss nodel for the case of uncontrollable
transitions and non linear constraints.
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