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Abstract: The methodology of determining the construction materials’ elastic constants is based on the 

mechanical tests, being mostly tensile tests, of partially loaded specimens (macro-specimens). The elastic 

constants obtained are applied mainly when a computer-aided modeling structure is used which considerably 

advanced due to computer techniques development. To obtain a deeper understanding of occurring phenomena, 

it is necessary to find out the ε-σ distribution as far as to the ultimate strength of specimens taken from various 

structure localities, instead of the simple knowledge of Young’s modulus of elasticity and Poisson’s ratio. The 

random combined loading of the tensile test specimen exist probably. The linear and nonlinear mathematic 

models of the material identification under the combined loading of the specimen are described in this paper. 

 

 

1. Introduction 
 

Identification of the mechanical properties of the solid materials via tensile test performed 

by breaker is based on determination of the specimen deformation under predefined load. Or 

the other way round, the independent variable is deformation and the determined variable is 

load required by shredder to achieve required predefined deformation. The tensile test is both 

by construction layout of the shredders and by the shape of the tested specimen designed for 

evaluation of single axis tension effects. The single axis tension is thus one of required 

condition of objective determination of material properties identification.  

In case of predefined shredder force load, the deformations of the specimen are usually 

evaluated by strain gages, which monitor the surface of the sample in one particular region of 

several millimeters to centimeters. When we place more than one strain gages around the 

evaluated specimen cross section boundary, the measured deformation can be mutually 

different although the load tension is supposed to be equivalent in whole cross section. This 

fact can induce a false impression that the material properties of identical samples can be 

sometimes even considerably different, see [1]. If we compare the behavior of constructions 

based on material properties values, the results do not have such a large variance in 

comparison the dispersion of the tensile test measured values. Thus here arises a question 

which of the measurement from the set of tensile test results should be taken into account as 

convenient for material property determination and when the result received from the simple 

result regression of tensile test data is sufficient for inspected material property determination.  

Big variance in the measured values can be caused by combined load of the specimen, 

which is supposed to be loaded with a single axis pull loading. This can be inflicted by the 

inappropriate fixation of the sample in the tensile machine. The jaws of the tensile machine 

can be fixed in tilted position in respect to the load tension axis. The probability of such 

diverted fixation is high, as depicted in Fig. 1. The axial specimen loading by this non-

uniform boundary condition support is really non-uniform loading with unsymmetrical stress 

in the cross section. 

The longitude specimen fibers between the jaws of the tensile machine are no equally 

long. Also the depth of tensile machine jaw bite is uneven. Numeric simulations of uneven
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boundary conditions for homogenous linear Hookean material show, that such boundary 

conditions modify the non-uniform strain distribution over the specimen cross section – the 

load of cross section is not homogenous. This could be the route cause for the large variance 

in the tensile test measurements. The practical realization of the tensile test cannot provide the 

even load over the whole cross section - the partial force homogenous load. Thus, the 

evaluation of elasticity constant and other material properties can be determined with tensile 

test only with certain difficulties. The tensile specimen in the tensile machine is always loaded 

with tension and also random unknown bending moment, which is unmeasured by the tensile 

machine. 

 

Figure 1: Tensile specimen and non-uniform boundary support condition do to the shredder 

jaws 

 

2. Mathematic model of the data regression 
 

If the specimen has a linear Hookean material with Young’s elasticity modulus E, the 

combination of the axis force and the bending moment creates the plane of the stress or the 

strain above the cross section. Strains measured by the strain gages are tightly related to the 

plane orientation. The figure 2 depicts the position of six strain gages (1 - 6) placed on the 

specimen. The gages are placed on boundary of the specimen cross section. The coordinates 

z,y are aligned with the direction of main central axis of the cross section. We suppose the 

second moments of the specimen cross section area to be Jy, Jz and also the components of the 

unknown bending moment to be My and Mz. 

The dependence of a strain of the i-th strain gauge  i on the axis stress σ =F/A and on the 

regression coefficient of the measured data set ki  can 

be described via equation (1). After substitution of the 

Hooke’s law into equation for the stress (2) for 

combination of bend and tension in place of i-th strain 

gauge, we get a linear equation for three unknown 

variables. Two are the unknown bending moments 

My, Mz and third is the Young’s modulus E  

 

Figure 2: Assembly of the specimen cross section 

boundary with the strain gauges 1 to 6. Load of the 

specimen with the unknown bending moment 

components My, Mz. 
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For modulus determination, it is sufficient to apply at least three strain gauges placed 

on the boundary of the sample cross section. The system of linear equations can be composed 

for the data measured by these strain gauges, after these values are treated by linear regression 

according to equation (2). The final linear equation system has three unknown variables E, My 

a Mz. Principal and application was published in [2]. By population of the cross section 

boundary with greater amount of strain gauges is more costly, but the information received 

via such measurement from small set of test specimen can be sufficient for identification with 

good precision. Such evaluation cannot be performed for such tests, where the number of 

gauges is below the minimum required amount (1 or 2), because these simplified 

measurement do not contain sufficient amount of information for the real cross section load 

distribution determination. Such material property identification is not objective (valid) even 

for large number of specimen as all results can be easily biased.  
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 𝑨𝑻 × 𝑨 ×  𝒙 =  𝑨𝑻 × 𝒃   𝒙 =  𝑨𝑻 × 𝑨 −𝟏 ×  𝑨𝑻 × 𝒃                           (5) 

 

 

In cases that the larger number of strain gauges is used  (for Hookean materials only), the 

linear regression of individual gauges data can be used. This allows us to modify the linear 

equation system (2) with unknown variable vector x(E, My a Mz,) into the equation (3). If we 

transform the linear equations for individual strain gauges (2) into the matrix form with the 

coefficient matrix A with unknown variables vector x of deformations and right hand side b, 

we get the new linear system (4).  

 
Figure 3: Representative tensile diagram of the specimen with sixth strain gages.  
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The number of equations can be generally larger than number of unknown variables, 

which is three. The system can be solved as (5). Equations (4), (5) can be successively 

normalized in respect to nominal stress by divide of the value σ = F/A. The value of Young 

modulus will not be influenced, but the components of bending moment are then normalized 

to unitary nominal tension stress. 

 
Figure 4: The first part of the tensile diagram of the specimen with six strain gages. 

 

 
Figure 5: The data part of the linear regression. 
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Practical illustration of the measurement of the tensile test specimen with six strain gauges 

is depicted in Fig. 3. Axis of the stress σ stands for nominal axis stress, which is determined as 

a fraction of tension force F inflicted by tensile machine and the cross section surface A. This 

σ is not equivalent to stress in the places, where the strain gauges measure its deformation 

values. In first phase of specimen load (under threshold value of σ=70 MPa ) the jaws are 

grabbing the specimen more and more firmly, however, the fixation in the tensile machine 

jaws is not yet stabilized. Measured data are unstable and they have no relation to stabilized 

construction behavior. Thus, for the low data reliability, this data set is excluded from the 

final evaluation. The detail can be seen in Fig. 4. 

Up to the stress value of σ=500 MPa the measured data can be considered to be highly 

linear. Equations of regression lines for the range with the linear material behavior are 

depicted in Fig. 5. Adaptation of these equations to helps to overcome the initial transition 

instability in the measured data from Fig. 4.  Thus, we shift the regression lines into the origin 

of the diagram and we centralize the measurements to this new origin (by subtracting the 

corresponding absolute coefficients, so that the measurement starts with the data from the 

linear area). 

By transformation of the linear computation model of the tensile test with use of equations 

(4) and (5) we receive unbiased linear regression of this part of the tensile test. The function 

values are predetermined by Young’s modulus E as shown in Fig. 6, which can be 

subsequently determined from the measured values. Each level of load, which is in reality 

decomposed into the tension and bending components, is represented in this final line by 

several deformation values of the measurement strain gauges. The linear area of deformation 

is smoothly followed by nonlinear deformation part in point (εlin,σlin). The nonlinear part of 

regression curve is depicted as σ
*
(ε

*
). The range, where the strain stress relationship can be 

regressed linearly continues smoothly in point (εlin,σlin) into the nonlinear dependency σ
*
(ε

*
), 

which is generally in respect to the assumption that the dependency is a smooth function.  

From the diagram depicted in Fig. 3, we further analyze the possibility to identify a 

relationship in the measured data in the range of nominal stress levels from 495 to 649 MPa. 

This is depicted in Fig. 7. This data can be fitted via the polynomial regression function of 4th 

order. The dependency can be expressed both in direct ε(σ) and in inverse form σ(ε) . The 

equations for all 6 measurement gauges are formulized in equations (6) and (7). 

The real stress in the locations of measurement gauges are known and, similarly as in the 

linear case, these do not match the nominal stress brought to the specimen via breaker. 

However, the nominal stress takes a part in equations (6) and (7). Because the relationship 

between the deformation and stress is here nonlinear, deforms the strain the cross section area. 

 

Figure 6: The sequence regressions principle 
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Figure 7: The data part available for the nonlinear regression model 

 

The assumption for the next step is, that we start from the certain level of nominal stress 

σ , which value is close to linear threshold (εlin, σlin ) as depicted in Fig 6. If there are at least 
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the specimen cross section, it is possible to form a quadratic regression function for strain as 

in equation (8). This function contains six parameters d0 to d5, which can be computed from 

the deformations measured by the gauges at certain nominal stress level. 

 

𝜀(𝑧, 𝑦) = 𝑑0 + 𝑑1·𝑧 + 𝑑2·𝑧
2 + 𝑑3·𝑦 + 𝑑4·𝑦

2 + 𝑑5·𝑧·𝑦                                   (8)  
 

Normalized regression function for the σ
*
(ε) is assumed to be in the same format as the 

regression functions for the nominal (virtual) stress given by (7) - in the format of 4th order 

polynomial (9). 

 

𝜎∗(𝜀) = 𝑐0 + 𝑐1·𝜀 + 𝑐2·𝜀
2 + 𝑐3·𝜀

3 + 𝑐4·𝜀
4                                       (9)  

 

Distribution of the real axis stress load over the measured cross section 

σ
*
(z,y)= σ

*
(ε(z,y),c0, c1, c2, c3, c4) is then determined by the substitution of the equations (8) 

and (9), as the individual threads in the material have different deformation and to different 

deformation corresponds different stress level. For the unknown coefficients c0, c1, c2, c3, c4 

there are several conditions to satisfy. First of all there are boundary requirement that the 

transition from linear area must be smooth – here formed as equations (10) and (11) and 

depicted in Fig. 6. Addition ally the force equilibrium condition (12) for the cross section 

area and moment equilibrium condition for the measured cross section must be fulfilled. The 

moment conditions is composed in the independent direction of coordinates z and y of the 

cross section.  

 

𝜎∗ 𝜀𝑙𝑖𝑛  = 𝑐0 + 𝑐1·𝜀𝑙𝑖𝑛 + 𝑐2·𝜀𝑙𝑖𝑛
2 + 𝑐3·𝜀𝑙𝑖𝑛

3 + 𝑐4·𝜀𝑙𝑖𝑛
4 = 𝐸·𝜀𝑙𝑖𝑛 = 𝜎𝑙𝑖𝑛                10  

 

𝑑(𝜎∗ 𝜀𝑙𝑖𝑛  )

𝑑𝜀𝑙𝑖𝑛
= 𝑐1 + 2·𝑐2·𝜀𝑙𝑖𝑛

1 + 3·𝑐3·𝜀𝑙𝑖𝑛
2 + 4·𝑐4·𝜀𝑙𝑖𝑛

3 = 𝐸                              11  
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In this system of equations, the known value is the stress on boundary of the linearized 

data part σlin, the next variable is the Young's modulus of this data part, the cross section A 

and the nominal stress σ – determined by the loading force F induced by the tensile machines. 

Additional requirement is to measure via experiment both moment components Mz, My, which 

are not measured with standard tensile machines. With unknown moment components, the 

problem of material property evaluation would be infeasible. 
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4 = 
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2 + 𝑐3·𝜀𝑘+1

3 + 𝑐4·𝜀𝑘+1
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𝑑 𝜎∗ 𝜀𝑘  

𝑑𝜀𝑘
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3                           16   

 

Analogist approach could be used for the next step of nonlinear identification only when 

using  equations (10) and (11) to modify equations (15),(16), which express the properties of 

the regression boundary( where k is the subscript of the measured data part). After a level by 

level mapping of the nonlinear properties behavior of the tensile diagram, the constants c0, c1, 

c2, c3, c4  for the individual stress levels are computed. These enable for values of individual 

strain εi, which are measured by strain gauges, record into table value the corresponding 

loading stress. The resulting data set then can be finally approximate by function, which 

expresses the partial material behavior during the tensile test.  
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