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Abstract: Torsion vibration is a common problem that occurs in most rotating machines. The calculation of 
torsion vibration is difficult. It can be performed using motion equations, transmission matrix method or finite 
elements method. The numerical solution usually requires major simplifications therefore it is not precise 
enough. For this reason, a measurement is necessary and gives more accurate results. This paper will introduce 
the evaluation of torsion vibration by an integration of a measured angular speed difference. It is possible with a 
DMU device which was developed at VÚTS Co. The angular speed measurement with the DMU device is based 
on time intervals measurements with high resolution so high angle resolution and accuracy is achieved. 
 

1. Introduction 
 

Torsion vibration measurements or generally angular quantities measurements are 
complicated and belongs to exacting tasks of measurement problems. It is caused by relatively 
small amplitudes of torsion vibrations and by lack of angular acceleration sensors. The torsion 
vibrations analysis is complicated because of system non-linearity, especially clearances in 
mechanisms, variable rigidity and excitation forces, high burdens, influence of the driving 
motor etc. Torsion vibration affects the whole mechanical system that reacts on the reference 
shaft and causes unevenness of rotation. Torsion vibrations cause noise, inaccuracies, higher 
force transmission to the foundation, a reduction in durability of components and increase the 
risk of fatigue fracture. 

For small angular deflection measurements it is necessary to use a sensor with 
adequate resolution. For commonly used angular sensors especially incremental rotary 
encoders meet that requirement. Encoders are based on a parallel beam of light that pass 
through a grid placed on a disc which is mounted on a reference shaft. Raster grid modulated 
beam of light is converted by photoelectric elements to the corresponding electric signals. The 
basic characteristic of the encoders is the number of pulses per revolution. There are encoders 
with the number of pulses from 60 to 90 000 on the market. For small torsion vibrations 
amplitudes are suitable encoders with a high number of pulses, thus with high resolution. But 
they are more voluminous, more expensive and have significantly limited the maximum 
angular speed of the shaft. For common angular speeds, encoders up to 5000 pulses per 
revolution are typically used. A common approach to measurement using incremental rotary 
encoders is sensing with constant sampling frequency and then the evaluation of 
measurement, i.e. with frequency analysis [1]. The angle is measured as a simple reading of 
the edges of the pulses (4 edges per pulse). 
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Because each encoder pulse contains 4 evenly distributed edges, the measurement 
error is the eighth the size of a single pulse. An encoder with 500 pulses has a measurement 
error of 0.09°. To measure small torsion vibrations this measurement error is too large. The 
number of pulses with sinusoidal output can be extended using the interpolator. Their 
possibilities in the operating angular speeds are limited and are compensated by an increased 
error resulting from interpolation. Another approach is to determine the angle using the phase 
demodulation impulse signal received from the encoder. This method was developed by Prof. 
Tůma [2]. However the measurement error is the same as the previous method [3]. The 
following text shows the method of determining the angular speed using the measurement of 
the length of time (period) of encoder pulses.  
 
2. Accuracy of Measurement 
 

Encoders sense with a common angular resolution 0.01° to 0.5°, which is not 
sufficient enough for some measurements of torsion vibration. As already mentioned, the 
angle of rotation is determined as the sum of all edges of two lines impulse signals that are 
read by the encoder from the start (reset counter) to the time measurement. Angular 
measurement error δφ is given by the number of pulses p according to the formula 
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The measurement error decreases with the increasing number of encoder pulses. The 

common angular speed for example 2000 RPM and sampling frequency 100 kHz require an 
encoder with a minimum number of pulses p = 1500. Then the deviation of the measured 
angle from the real angle can be up to 0.03°. The amplitudes of torsion vibration in orders of 
hundredths of a degree or less cannot be measured. Usually the angular speed and acceleration 
are needed to assess the torsion vibrations. The angular speed and acceleration evaluated by 
the derivative of measured angle by this method are poor.  
 The DMU device is based on time interval measurement of encoder pulses [4]. This 
makes possible to measure instantaneous angular speed as the reciprocal value of the length of 
the time interval, therefore with a high (but variable) sampling frequency. Angular accuracy 
of encoder signal is large (angle intervals between pulses of quality encoders differ by less 
than 0.1%) and period ∆t between the edges of the signal is measured with high resolution 
10 ns. Angular speed is calculated as 
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where ∆φ is the angle interval which is measured over a period of time. The angle interval is 
defined by the number of pulses of the encoder per revolution p and by quantity iω which 
indicates how many pulses of the encoder is measured through the time. The evaluated 
angular speed ω is not an instantaneous angular speed but the mean of the angular speed in 
time interval ∆t. 
 DMU therefore measures primarily angular speed. The measured values are very 
accurate according to the high frequency used for time measurement fm = 100 MHz. The angle 
of rotation is then obtained by an integration of measured angular speed. The calculated angle 
is to several orders more accurate than angle given by the sum of the impulse signal edges as 



is shown below. Angular speed at the ends of the shaft is defined in accordance to the 
previous as 
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where the values NA, NB indicate the number of period of measuring frequency fm which is 
found between the two measured pulses of encoder A, resp. B. The angle of rotation of the 
twisting shaft is then 
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It is expressed from the condition of the measurement 
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and after the substitution to the relation (5) formula for the angle difference ∆φi-∆φi-1 is 
obtained  
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For the smallest non-zero measured deviation the difference NB-NA has value 1. Then the 
formula is simplified and expresses a maximum theoretical resolution (measurement error) of 
this method 
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As we see from the formula, this measurement error does not depend on the number of 
encoder pulses and linearly worsens with an increasing angular speed [5], [6]. For an angular 
speed of 2000 RPM a maximum resolution of 0.00002° is achieved. That is three orders better 
result than measurement of angle by sum of impulse signal edges with the same encoder. 
 
3. Application 
 

A practical demonstration of this method is the measurement of torsion vibration of 
power generator shaft used for the production of electricity and heat. The machine consists of 
two six-cylinder combustion engines connected together using a torsion stiff clutch and 
synchronous generator, connected directly to the second engine balance wheel (with no 



bearing to the side of the engine). The engines and generator are fixed to a machine frame 
which is elastically mounted on silent-blocks. 

The purpose of the measurement was the evaluation of torsion vibrations at the ends of 
the main shaft and comparing the results with the values obtained by calculations. According 
to the relatively compliant frame and its possible effect on the shaft torsion vibrations, the 
motion of the frame was also measured. It was necessary to measure it very precisely because 
of small expected vibrations. 

 
3.1. Description of measurement 

 
From the description of the machine it is clear that it is a very complicated torsion 

system. The difficulty of the measurement increased the power regulation of the machine 
which drove the fuel supply. Random variations were usually in the range greater than ±2%. 
This caused a fluctuation of the mean value of the angular speed during one cycle (720°) 
although the mean value of the angular speed of the whole measurement was very accurate 
(given by the frequency of the electric network). Vibrations therefore were not stationary. 

According to the conditions of measurement the angular speed was measured only at 
the ends of the shaft. To place the encoders inside would have been too difficult and 
expensive. However this method was satisfactory for the comparison of results with the 
calculation. Several modes of measurement were chosen to assess the influence of power. 
Each mode was measured five times. 

Incremental rotary encoders had 3600 pulses per revolution, i.e. an angular resolution 
of 0.025°. In contrast, the minimum measurement error of angle evaluated by integration from 
the measured angular speed has for 1500 RPM value 0.00009° (approximately 280x better). 

The accuracy of the measurement was increased by the elimination of a systematic 
error that was caused mainly by imperfect centring of the encoder against the measured shaft. 
During the manual rotation with open cylinders (with no compression), when only low 
passive resistances acted, the difference of angles was measured. The difference of angles was 
added as a correction to the measured torsion vibration for the assessment of the 
measurement. The correction was in the range approximately from 0° to 0.03°. 

 
3.2. Assessment of measurement 

 
The measurements were assessed statistically and with frequency analysis. The absolute 
torsion vibration of the angular speed of both ends of the shaft and their difference were 
evaluated. The angular torsion vibration of the whole shaft was calculated by the integration 
of the angular vibration difference. The influence of the twisted frame was indicated as 
negligible due to the measured torsion vibrations.  

 
Figure 1: Angular speed of the 1st engine shaft [RPM] for power equal to 300 kW (5 different 
measurements which are mutually shifted for a better reading). The maximum peak to peak 
values are 48.1, 56, 47.5, 54.3 and 55 RPM. The mean values of the angular speed are also 
shown.  



 The mean value of the angular speed of one cycle (720°) fluctuated about 1.96 RPM 
at the maximum (peak to peak). Maximum values of instantaneous angular speed deviations 
(Figure 1) were less than 56 RPM which represents a fluctuation of about 2%. It appeared that 
vibration of the 1st engine shaft was considerably larger than of the generator shaft. Prevailing 
angular speed vibrations corresponded to the ignition of each cylinder (12 per cycle). 

The amplitudes of the angular speed difference of engine minus generator (Figure 2) 
were more significant, up to 68 RPM, and again the 12th harmonic amplitude dominated. The 
angular torsion vibrations were different (Figure 3), the maximum value of deviation was 
0.75° and the third harmonic amplitude dominated. The non-stationary process is evident 
from the statistics of angular torsion vibrations on Figure 4 compared with Figure 3. 

 
Figure 2: The angular speed difference of engine minus generator [RPM]   for the power 
equal to 300 kW. Maximum peak to peak values are 59, 68, 60.5, 67.2 and 64.2 RPM.  

 
Figure 3: The angular difference of engine minus generator [deg] for the power equal to 
300 kW. Maximum peak to peak deviations are 0.75, 0.72, 0.69, 0.73 and 0.64 deg. 

 
Figure 4: The statistics of the angle of rotation difference engine minus generator [deg]. The 
middle curve represents mean value, the neighbouring curves are added standard deviation 
and the ultimate curves are maximum and minimum values. Evaluated from 42 cycles. The 
overall mean value of the middle curve 0.098 deg (mean twisting from the acting torques), the  
peak to peak deviation of mean value is 0.601 deg and the maximum peak to peak deviation is 
0.886 deg. 



A good assessment is given by the frequency spectra. The biggest angular amplitude, 
0.192°, had a third harmonic component that corresponded to the frequency of 37.52 Hz. The 
frequency of 150 Hz corresponded to cylinder ignitions, caused the biggest amplitude in the 
angular speed spectra, 8.37 RPM. 

Interesting vibrations were located approximately in the range of 50 to 60 Hz in the 
angular difference spectrum (Figure 5). Although the biggest amplitudes of these vibrations 
were only several hundredths of a degree, in this sum they gave strong vibrations with beats. 
They achieved a high deviation in orders of a tenth of a degree and well documented total 
complexity of vibrations (Figure 6). 

 
4. Conclusion 
 

From the theoretical consideration of the various methods of torsion vibration 
measurement using the incremental rotary encoders and from the example of measurement, 
results show a large advantage of angular speed measurements based on determination of time 
intervals between the encoder pulses. According to the high accuracy and resolution of time 
measurement and with high quality encoders, high accuracy and resolution is achieved in 
angular speed measurements. The angle is evaluated by an integration of angular speed, 
which means an increase of resolution in orders about several orders compared to the angular 
measurement performed by a summation of impulse signal edges. High quality angular 
acceleration is given by derivative of measured angular speed that is unobtainable by a two-
ply derivative of a directly measured angle. 

 
Figure 5: The amplitude spectra of the angular difference engine minus generator [deg] from 
42 cycles for the power equal to 300 kW. 

 
Figure 6: The angle of rotation difference of engine minus generator [deg] in the frequency 
range of 50.1 to 60 Hz. The first 20 cycles (40 revolutions). The maximum deviation is 0.22°, 
minimal deviation is -0.22°. The biggest vibrations have a frequency of around 55 Hz. 
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