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Abstract: This paper deals with experimental determination of fundamental natural 
frequencies and damping ratios of hybrid composite specimens consisting of 
unidirectional carbon fibre reinforced epoxy composite and rubber. A laser device for 
measuring displacement was used during the experiments. Records were processed in 
Matlab. Furthermore, the elastic parameters were verified by comparison of natural 
frequencies obtained from experiments and numerical simulations.  
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1. Introduction 
There is a very conservative approach to the application of materials other 

than steel, cast iron or nodular cast iron in the design of machine tools. The increase 
of operational speeds of machine tools leads to the demand for light designs of 
moving bodies with a low moment of inertia, high stiffness and good damping 
characteristics [1]. Such demands on materials are satisfied by some light-metal 
alloys, ceramics, composites and hybrid structures. Hybrid structures consisting of 
two or more different materials give the advantage of a synergetic effect. For 
example, a layered composite combined with cork or rubber layers shows better 
damping ability than the composite alone. Such structures could be successfully 
used for the supporting structures of machines. To understand dynamic behaviour 
better, the damping characteristics must be determined. This work deals with 
experimental determination of damping ratios and fundamental natural frequencies. 
How the dynamic behaviour of a composite cantilever beam is affected by the 
integration of rubber layers was investigated during the experiments. 
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2. Dynamics of damped system 
Many parts of machine tools, namely boring bars, headstocks, quills, etc. counter the 
oscillations. These substructures can be simply represented as a cantilever beam. By 
focusing on in-plane displacements of the free end, the cantilever beam problem can 
be treated as a system with a single degree of freedom. 

2.1. Equation of motion of damped system with single degree of freedom 

By the application of second order Lagrange equations, the motion of discrete linear 
systems with a single degree of freedom can be described as 

 ( )mq cq kq F t+ + = , (1) 

where [ ] 1 2, ,q m q m s q m s− −⎡ ⎤ ⎡ ⎤⋅ ⋅⎣ ⎦ ⎣ ⎦ is a generalized coordinate and its 1st and 2nd 

differentiation with respect to time t; [ ]( )F t N  is a generalized time-dependent 

applied force; [ ]m kg is a mass of the system; 1c N s m−⎡ ⎤⋅ ⋅⎣ ⎦ is a viscous damping 
constant and 1k N m−⎡ ⎤⋅⎣ ⎦ is a stiffness constant. 

In the case of free oscillations, the Eq. (1) can be consequently rewritten to 

 2
0 02 0q q qζω ω+ + = , (2) 

where damping ratio ζ and undamped natural frequency ω0 are defined as: 
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ω −⎡ ⎤= ⋅⎣ ⎦  (4) 

There are three possible states of damped system: overdamped ( 1ζ > ), 
critically damped ( 1ζ = ) and underdamped ( 0 1ζ< < ) [2]. 

In the next section, only the underdamped state will be considered. Then, the 
solution of Eq. (2) representing the displacement of the system can be found in the 
form: 

 ( ) ( )0
0sintq t Ce tζω ω ϕ−= + , (5) 

where [ ]C m is amplitude, 1rad sω −⎡ ⎤⋅⎣ ⎦ is the damped natural frequency of the 

system and [ ]0 radϕ is phase shift. 

The damped natural frequency can be expressed as: 

 2
0

21 ,
T
πω ω ζ= − =  (6) 

where [ ]T s is the period of the waveform (see Fig. 1). 
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Fig. 1. Response of underdamped harmonic oscillator. 

Based on Eq. (5), the exponential attenuation rate is then defined: 

 0b ζω= . (7) 

The damping ratio can be determined using the logarithmic decrementδ , 
which is defined as the natural logarithm of any two peaks: 
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where 0q is the greater of the two amplitudes and nq  is the amplitude of a peak n  
periods away. The damping ratio is then found from the logarithmic decrement: 
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3. Determination of elastic parameters 
A series of experiments was carried out on specimens made of carbon/epoxy lamina 
(913C-HTS), rubber (65 ShA) and also on the hybrid structure in which the layers 
were bonded using Loctite 480 glue. Although the rubber exhibits viscoelastic 
response (Fig. 2), during deformation of less than 10%, it was assumed to show 
linear elastic behaviour and its mechanical properties were determined using tensile 
and compressive tests. The specimens were cyclically loaded at 10 mm/min. To 
avoid the influence of the “Mullin’s effect”, only the 4th cycles were considered. 

 
Fig. 2. Viscoelastic behaviour of rubber; Mullin’s effect. 

10% deformation 

20% deformation 
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The mechanical properties of the entire composite were set with the 
knowledge of the properties of the fibre and the matrix. The classical laminate 
theory was used with the assumption of transverse isotropic material [3, 4]. 

Table 1. Mechanical properties 

MAT. PARAMETER VALUE NOTE 

Young’s modulus Er 10  [MPa] 

Poisson’s ratio νr 0.49 Rubber 

Density ρr 1170 [kg.m-3] 

Isotropic 
material 

E1 113.92  [GPa] 

E2 5.47  [GPa] 

G12 2.43  [GPa] 

ν12 0.34 

 ν23 0.3 

Composite 

Density ρc 1560 [kg.m-3] 

Transverse 
isotropic 
material 

     

4. Verification of elastic parameters 
To verify the identified mechanical properties, the modal analyses were computed 
using Finite Element Method (FEM). Numerical models were created in FEM 
software MSC Marc 2008r1. The fundamental natural frequencies (f1FEM) were 
compared with the experimental data. 8-node elements were used. 

 
Fig. 3. Preview of one of the numerical models. 

5. Experiments 
During the experiment, one end of the specimen was clamped and after a slight 
stroke, the time-dependent displacement q(t) of the free end was recorded (Fig. 4) 
using the optoNCDT laser measurement device (Micro-Epsilon co.). The records 
were processed using the Matlab script to obtain the damping ratio ζ and logarithmic 
decrement δ (see Fig. 5 for block diagram). First, the value of the exponential 
attenuation rate was investigated; the parameters of exponential function 

( ) bty t Ce−= were fitted by interlaying the data peaks using the least square method. 
Then, according to the theory, the logarithmic decrements – Eq. (8) and damping 
ratios - Eq. (9) were computed. 

3, Thickness 

1, Longitudinal 

2, Transverse 
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Fig. 4. Arrangement of experiments:  a) separate rubber/composite 
    b) specimen with rubber “patch” 
    c) hybrid structure specimen. 

The dimensions of specimens, the damping ratios and also the comparisons of 
fundamental natural frequencies are shown in Tables 2 – 8. 

X(2) xdataf X(1) e− ∗= ⋅

 
Fig. 5. Block diagram of Matlab script. 
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Table 2. Specimen №1 – Rubber (Fig. 5a) 

l [mm] ll [mm] lr [mm] 
32.28 1.44 - 

ζ δ f1EXP [Hz] f1FEM [Hz] freq. error 

tr [mm] tc [mm] b[mm] 
3.4 - 6.18 

0.072 0.403 29.8 30.2 +1.3% 

  
Fig. 6. Specimen №1. Fig. 7. Damping curve of specimen №1. 

Table 3. Specimen №2 – Composite (Fig. 5a) 

l [mm] ll [mm] lr [mm] 
412 82.5 - 

ζ δ f1EXP [Hz] f1FEM [Hz] freq. error 

tr [mm] tc [mm] b[mm] 
- 2.7 19.7 

0.002 0.013 20.4 21.5 +5.4% 

  
Fig. 8. Specimen №2. Fig. 9. Damping curve of specimen №2. 

Table 4. Specimen №3 – Hybrid structure (Fig. 5b) 

l [mm] ll [mm] lr [mm] 
460 82.5 150 

ζ δ f1EXP [Hz] f1FEM [Hz] freq. error 

tr [mm] tc [mm] b[mm] 
2.4 2.7 19.7 

0.001 0.008 16.9 17.2 +1.8% 

  

Fig. 10. Specimen №3. Fig. 11. Damping curve of specimen №3. 
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Table 5. Specimen №4 – Hybrid structure (Fig. 5b) 

l [mm] ll [mm] lr [mm] 
460 82.5 300 

ζ δ f1EXP [Hz] f1FEM [Hz] freq. error 

tr [mm] tc [mm] b[mm] 
2.4 2.7 19.7 

0.001 0.008 16.0 16.2 +1.3% 

  

Fig. 12. Specimen №4. Fig. 13. Damping curve of specimen №4. 

Table 6. Specimen №5 – Hybrid structure (Fig. 5b) 

l [mm] ll [mm] lr [mm] 
460 82.5 450 

ζ δ f1EXP [Hz] f1FEM [Hz] freq. error 

tr [mm] tc [mm] b[mm] 
2.4 2.7 19.7 

0.001 0.009 12.4 13.4 +7.5% 

  

Fig. 14. Specimen №5. Fig. 15. Damping curve of specimen №5. 

Table 7. Specimen №6 – Hybrid structure (Fig. 5c) 

l [mm] ll [mm] lr [mm] 
412 50 - 

ζ δ f1EXP [Hz] f1FEM [Hz] freq. error 

tr [mm] tc [mm] b[mm] 
2.4 2.7 19.7 

0.034 0.214 35.5 38.6 +8% 

 
 

Fig. 16. Specimen №6. Fig. 17. Damping curve of specimen №6. 
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Table 8. Specimen №7 – Hybrid structure (Fig. 5c) 

l [mm] ll [mm] lr [mm] 
412 50 - 

ζ δ f1EXP [Hz] f1FEM [Hz] freq. error 

tr [mm] tc [mm] b[mm] 
2.4 2.7 19.7 

0.043 0.270 44.3 44 -0.7% 

  

Fig. 18. Specimen №7. Fig. 19. Damping curve of specimen №7. 

6. Conclusion 
An experimental determination of damping characteristics was performed on 
cantilevered specimens and the method of transient response of the system was used. 
The experiments were performed on the lamina and rubber separately and also on 
the hybrid structures. The damping ratios were determined using the Matlab script. 
The elastic parameters were verified by comparing the fundamental natural 
frequencies obtained both experimentally and from FEM. Although the influences of 
the adhesive layers, material damping and forces in fixation were not considered in 
the numerical simulations, a good agreement (less than 10% difference between FE 
simulations and the experiment) was achieved, which proves that our estimation of 
material properties was quite accurate. A significant increase in damping is observed 
for the specimens in which the rubber is placed near the neutral axis, where 
(according to the Shear formula) shear stress is at a maximum. 

In further work, the different structures will be considered. The numerical 
models created here will be used to optimize the composition of hybrid structures. 
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