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Theory of Stress State Identification
After Hole-Drilling Method Application

Karel Vítek1

Abstract: The theory reported here increases applicability of the hole drilling
principle for the stress state identification. The new theory is proposed for the stress
state identification in the surface at the place of already drilled holes with a complete
drilling rosette equipment already installed either centrically or even eccentrically.
The method thus allows a further reusing of already installed measuring items, which
were originally placed there for the residual stress state identification, for
measurements of the stress states induced by any following external loading as if the
hole had not been drilled at all.
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1. Introduction
The hole-drilling experimental method for stress state identification results in a
small cylindrical hole drilled into the component surface. The strain-gauge rosette is
placed around the hole usually. The rosette strain-gauges placed on the component
surface capture strains in vicinity of the hole and the rosette stays fully functional
even after the hole-drilling process ends. Though, the hole-drilling theory principle
[2, 3] is applicable only for determination of stresses existing at the place of the hole
before the hole-drilling process. A repeated application of the same rosette already
installed for any next measurement would be therefore useful. A theory allowing the
analysis of following stress changes at the same point is desirable. We consider the
stress state changes that could be induced during the hole-drilling method
application as neglectable, as if the hole had not been drilled. We follow the hole-
drilling theory previously published [4, 5, 6] with the hole eccentricity effect
included.

2. The drilling hole theory for stress state identification
For the experimental stress state identification on surfaces of loaded components,
the semi-destructive hole-drilling principle uses the similitude of a thin Kirch’s plate
elastic model with a small straight-through hole with radius 0R  lead perpendicularly
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to the surface. Fig. 1 shows the Kirch’s plate loaded uniaxially by xσ  principal

stress and defines the relative radius 10 ≥= RRr  for the general point
α,r positioning reported in the polar coordinate system. The Kirch’s theory [1, 2]

sets θθ τσσ rr ,,  stresses at planes through the general point according to Eq. (1).

relative radius
r = R/R0 ≥ 1

y

x

drilled hole,
radius R0

σr, εrσθ,εθ τr,θ

α

σx- principal stress,
(or σx=“1“ )

z, εz

γr,θ

Fig. 1. Description of the stress state in the hole vicinity.
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The potential stress change manifests itself in the surface layer around the
drilled hole by a measurable strain change, which can be calibrated in advance.
Hooke’s law in Eq. (2) allows expression of rε , θε , θγ r and zε  strains changes in

the straight hole through the plate from the θθ τσσ rr ,,  plane stress changes,
Young’s modulus E  and Poisson’s ratio ν . The similitude between the plane stress
state at the body surface and the stressing of the thin Kirch’s plate with a straight-
through hole can be used in the hole-drilling principle for stress-state analyses [5, 6]
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(as well as in the hole-drilling method supported by E 837 international standard
[3]). The individual components reported in Eq. (1) have to be nevertheless modified
by multiplication by twelve different constants 322221 ,...,, ccc  according to Eq. (3).
The multipliers rectify the stress state for the real conditions of the bottom hole with
a perpendicular direction to the free surface. Thus, e.g. for the thin Kirch’s plate the
stress state directly corresponds with the Eq. (1) thanks to all twelve constants equal
to one, i.e. 1),( =hrck . In the case of the bottom hole, the 322221 ,...,, ccc  constants
depend first on the distance from the hole center described by the r  radius and,
second, on the h  depth of the hole.
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The complete components of the stress state changes in the component surface
in the hole vicinity can be further transformed by Hooke’s law in the analogy to
Eq. (2) to the strain components given in Eq. (4). Such strains are directly
measurable around the hole and the calibrated measured strain changes allow stress
identification in the hole center as if the hole had not been there.

Let the strain gauge winding be oriented along the g  direction (see Fig. 2)
with acute ϕ angle from θ axis at the point described by coordinates θ,r  (depicted

in Fig. 1). The strain along the strain-gauge winding g ,

which is identified by the strain-gauge, results from θε , rε

and θγ r strains and is derived by the use of double ϕ2  angle
through the Mohr’s transformation (5).

ϕ
γ

ϕεεεεε θθθ 2sin
2

2cos
22

,rrr
g +

−
+

+
=     (5)

Fig. 1 shows the partially unit vector defined in the
direction of xσ  principal stress in the angle α  to the
evaluated point, above which the thi −  strain gauge
winding is positioned in the g direction (see Fig. 2). The
curvilinear integral of the normalized strain transformed by
Eq. (5) along the winding with total length u  defines the

)(αit  strain-gauge sensitivity for xσ  principal stress in Eq. (6). A definition of the

second sensitivity of this strain-gauge )2( πα +it  for yσ  principal stress rotated

along the surface by 2π  from the xσ  stress direction follows a similar way. Both
sensitivities of the thi −  strain gauge of the drilling rosette are functions of the
theory constants 322221 ,...,, ccc  and particular positions and orientations r , α , g
of points along the winding. The orientation and position of individual strain gauges
is defined in accordance with E 837 standard [3], which postulates the hole drilled in
the ideal center of the drilling rosette, defines the angle α  parameter of a particular
strain gauge to xσ  principal stress and derives the placing of resting strain gauges of

Fig. 2.
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the rosette from it. Here in this more general theory, the symbol α marks the
orientation of a defined base point of the thi −  strain gauge to xσ  principal stress.
This α angle of the thi −  strain gauge thus results from its relative position to the
main strain gauge, which is inclined by α  from xσ  principal stress.

∫
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∫ ⋅
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i du

du
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)(
)( ,, παε
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For unknown principal stresses xσ , yσ  and angle α  a set of at least three
non-linear and independent equations can be established from the computed
sensitivities of individual strain gauges in analogy to Eq. (7). The equations
encompass the influence of both principal stresses on iε  strains measured by strain
gauges. A convenient way of their solution is reported in [5, 6].

)( )( )2( )( ,, ασασπασασε yiyxixiyixi tttt ⋅+⋅≡+⋅+⋅= (7)

A typical example of a use can be started from three signals 1ε , 2ε  and 3ε  of
three independent strain gauges of the drilling rosette, we have the system of three
non-linear equations (8).
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The first two equations serve for determination of unknown principal stresses

xσ  and yσ  as a functions of 1ε  and 2ε  strain signals and of an unknown angular

parameter α  defining the position of the principal stress σx according to Eq. (9).
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The substitution of two Eqs. (9) for 3ε  to the third Eq. (8) allows the
computation of α  parameter from Eq. (10), while the last substitution of α  back to
Eq. (9) leads to xσ  and yσ  principal stresses.
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Potentially, the regression model proposed here with 12 constants can be
further simplified by decreasing the number of constants, if the simplified solution
(e.g. with 7 constants) is objectivelly sufficient for stress state modelling in the
drilled hole point or the drilled hole vicinity.
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