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Abstract: The ring-core method is the semi-destructive experimental method used for evaluation 
of the homogeneous and non-homogeneous residual stresses. In this paper, the integral equation 
method to quantify non-uniform residual stress fields is discussed. Therefore, correctly 
determined and properly used calibration factors aij and bij, necessary for the residual stress 
measurement by the ring-core method, are essential. The finite element method is used for  
the simulation of residual states of stress and to calculate relieved strains on the top face  
of the core, which are necessary for the subsequent calibration factors´ determination. 
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1. Introduction 
The ring-core method (RCM) is a semi-destructive experimental method used for the 
evaluation of homogeneous and non-homogeneous residual stresses, acting over depth  
of drilled core. Therefore, the specimen is not totally destroyed during measurement and  
it could be used for further application in many cases.  

In this paper, the integral equation method (IEM) to quantify non-uniform residual 
stress fields, acting over depth of drilled core, is discussed. This method is described by a 
physical theory with a proper mathematical model. The IEM overcomes typical drawbacks of 
the incremental strain method (ISM), which leads to incorrect results, where a steep gradient 
of residual state of stress occurs. The incremental strain method assumes, that the measured 
deformations dεa, dεb, and dεc are functions only of the residual stresses, acting in the current 
depth z of the drilled groove and they do not depend on the previous increments dz, including 
another residual stresses. More information about the ISM could be found in papers [1, 2].  
In fact, relieved strains on the top face of the core do not depend only on the stress acting 
within the drilled layer and its position, but also on the geometric changes of the ring groove 
during deepening. These two factors are taken into account by the integral equation method, 
which has been particularly developed for the Hole-drilling method in 1988 [3, 4]. 

Anyway, the integral equation method assumes, that strain relaxation on the top face  
of the core, for the particular depth of the drilled groove, is superposition of all deformations. 
These deformations are caused by a partial residual stresses, acting within every drilled layer, 
of all depth increments (see Figs. 1 and 2). 
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Ajovalasit et al. [5] and Zuccarello [6] extended theory of the IEM into the ring-core 
application. They generally describe the IEM like a method, with a high sensitivity  
to the measurement errors, due to the numerical ill-conditioning of the equation set. This  
is caused by the position of the strain gauge on the top of the core, which is not enough 
sensitive to strains, relieved in the deeper layers of the drilled groove.  

 
Fig. 1. The ring-core method: geometry and general notation

 
Fig. 2. Loading cases based on theory of the integral equation method

This paper describes how, application of the ring-core method with theory of the IEM 
and the finite element method (FEM) could be used for a numerical simulation and  
for determination of the uniform or non-uniform residual state of stress. The numerical 
simulation is used for the measurement of relieved strains on the top face of the model´s core, 
at real positions of the strain gauge rosette´s measuring grids. Calibration factors´ matrices a 
and b, which are lower triangular, need to be calculated first in order to quantify the uniform 
or non-uniform residual state of stress, by the integral equation method. 
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2. Integral Equation Method 
Like each method, the integral equation method has its own theoretical background to define 
certain relations between known and unknown parameters. Generally, total deformation 
measured on the top face of the core, for the ring-groove having depth H, is the integral  
of an infinitesimal strain relaxation components, caused by the residual stresses, acting at all 
depths in the range of 0 ≤ z ≤ H: 
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where εa(H), εb(H), εc(H) are the strains, measured by the strain gauge rosette on the top of the 
core´s surface after a milling a groove having depth H, σ1(z) and σ2(z) are the unknown residual 
stresses acting at current depth z, αk(z) is the angle between the maximum principal stress σ1(z) 
and the direction of the strain gauge´s measuring grid k = a and A(H,z), B(H,z) are the calibration 
functions, dependent on the shape and geometry of the ring-groove (Fig.1). Using a three-grid 
rosette, Eq. (1) leads to a three linear equation set, from which the principal residual stresses 
and their orientation can be evaluated too.  

For i = 1,..., n finite depth increments Eq. (1) can be written as: 

 c b ak   
i

j
kijki ,,

1

==∑
=

εε  (2) 

where the strain εkij depends only on the stresses existing in the jth layer by means of Eq. (3). 
Consequently, it is necessary to divide the maximum depth H into i intervals with the depth 
increment of Δzi and to approximate the function of the principal residual stresses σ1(z) and σ2(z) 
in each interval by the proper uniform distribution (Fig.3). Therefore, considering i finite 
depth increments, Eq. (1) can be written as: 
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in which εkij is the strain component, relaxed on the surface solely due to the stress acting  
in the jth layer, when ith depth increments have been achieved, σ1j, σ2j are the stresses within  
the jth layer and aij ,bij are calibration factors. Knowledge of their dependence on the geometric 
changes of the ring-groove and on the disposition of the residual state of stress cross the depth 
of metallic material is essential and correspond of theirs appropriate application. 

 
Fig. 3. Approximation of non-homogenous residual stress field by the integral equation method 

Calibration factors aij and bij of the lower triangular matrices a and b cannot  
be determined by calibration coefficients K1 and K2 used for the incremental strain method  
[1, 2]. They can be possibly obtained by the finite element simulation.  
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2.1. Calibration factors´ determination 

For the correct determination of the depth-varying principal residual stresses σ1j,  σ2j  
by the IEM, it is necessary to determine calibration factors aij, bij, respective generalized 
calibration factors Aij, Bij for each type of used depth increment distribution. Generalized 
calibration factors Aij and Bij are not dependent on the material properties. 

Eq. (3), followed from the basic equation of the integral equation method  
Eq. (1), can be rewritten in order to determine the principal strains ε1ij and ε2ij as follows [5]: 

 ( ) ( )jjijjjijij BA 21211 σσσσε −⋅++⋅=  (5) 
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In order to determine factors aij, Aij it is necessary to consider a biaxial state of uniform 
stress with σ1j = σ2j = 1 MPa and the position of the strain gauge rosette placed centric on the 
top face of the core. Then, by considering Eq. (3) and relieved strains εaij = εbij = εcij = εij :  
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To evaluate factors bij, Bij, it is necessary to consider a pure shear state of uniform stress 
with σ1j = -σ2j = 1 MPa. Then, considering Eq. (3), for αj = 0° are relieved strains εaij = -εcij : 
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Finally, particular principal residual stresses σ1j ,σ2j (αj = 0°), acting in jth layer of drilled 
groove (Fig.1 and Fig.3), made by i = 1, ..., n depth increments, can be determined as follows: 
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2.2. Residual stress determination 

The strain components ei, di, mi [6], calculated from strains εai,  εbi and  εci, measured on the 
top face of the core by the three-element strain gauge rosette (Fig. 1), after milling the ith step 
of the groove, are superposition of all strains, relieved in every jth layer (see Eq. (2)): 
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The stress components sj, pj and qj, represented by Eqs. (16÷18), are calculated from 
stresses σaj, σbj and σcj, acting in every jth layer, when i = 1, ..., n depth increments have been 
reached:  
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Then, desired residual stresses si, pi and qi, calculated from the strain components ei, di, 
mi and stress components sj, pj and qj, after every drilled groove´s depth, can be found by 
following equations: 
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The basis of the integral equation method is described by Eqs. (19÷21). These equations 
consider stresses, acting in every jth layer, when i = 1,…, n depth increments have been 
reached, and therefore strains, measured on the top face of core after milling another dept 
increment. Furthermore, correctly determined and properly used calibration factors aij, bij, are 
required too.  

Finally, the principal residual stresses σ1i and σ2i, corresponding to the ith layer of drilled 
groove, can be re-calculated by Eq. (22): 

 ( )22
2,1 iiiii qps +±=σσ  (22) 

2.3. Step optimization 

Papers [5, 6] made by Ajovalasit et al. and Zuccarello are focused on the step optimization, 
which is important for the IEM too. The strain measurement errors´ influence, which occurs in 
practice, affects accuracy of the residual state of stress determination. Influence of the strain 
measurement errors depends particularly on the number and magnitude of the depth increment 
distributions Δzi and consequently on the maximum depth H of the drilled groove.  

Study of the step distribution´s influence on the determination of calibration factors aij, 
bij and on the subsequent residual stress state determination is not in the scope of this paper. 
Therefore, total depth of drilled groove H = 5 mm has been made by n = 8 optimized depth 
increments (see Table 1), as recommended in [5, 6]. Optimum depth increment distribution 
minimizes error sensitivity of the experimental measurement and considerably improves the 
numerical conditioning.  

Table 1. Distribution of the depth n = 8 increments Δzi for a total depth of H = 5 mm 

Depth increment Δzi [mm]: 
Δz1 Δz2 Δz3 Δz4 Δz5 Δz6 Δz7 Δz8 
0.6 0.45 0.4 0.4 0.45 0.5 0.7 1.5 

3. FE-simulation 
A prerequisite for correct and accurate measurement of residual strains on the top of the core 
is to use the finite element simulation. Therefore, the ANSYS analysis system is used for the 
subsequent FE-simulation.  

FE-analysis is based on a specimen volume with dimensions of a x a = 50 mm and 
thickness of t = 50 mm. Due to symmetry, only a quarter of the model has been modelled with 
centre of the core on the surface as the origin. The shape of the model is simply represented by 
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a block with planar faces with a quarter of the annular groove drilled away (Figs. 4 and 5). 
The annular groove has been made by n = 8 increments with the different step´s size Δzi 
(Table 1). The maximum depth of drilled groove is H = 5 mm. Dimension of the outer 
diameter is D = 2ri = 18 mm and groove width is h = 2 mm.  

  
Fig. 4. Quarter of global solid model Fig. 5. Detail of the core with finite element mesh 

Linear, elastic and isotropic material model is used with material properties of Young´s 
modulus E = 210 GPa and Poisson´s ratio μ = 0.3. Length and width of each measuring of 
grid of FR-5-11-3LT strain gauge rosette is l = 5 mm and w = 1.9 mm respectively [7]. In case 
of known directions of principal residual stresses, placing of the three-element strain gauge 
rosette on the top of the ring-core is shown in Fig. 1. Strain measurement on the top of the 
core is made by the integration across rosettes´ measuring grid surface.  

In case of the biaxial state of uniform stress simulation, applied surface´s pressure  
p = pr = 1 MPa is demonstrated in Fig. 6a and pressure pr = p·cos(2α), pt = p·sin(2α) (load´s 
magnitude is varying with the angle 0° ≤ α ≤ 90°) in order to simulate the pure shear state of 
uniform stress is demonstrated in Fig. 6b. All loading conditions are applied to the both inner 
sides of the ring-groove, in the range of the each depth increment.  

 
Fig. 6a. Loading conditions for the biaxial state of 

uniform stress simulation 
Fig. 6b. Loading conditions for the pure shear state 

of uniform stress simulation 

4. Results 
Process of the ring-core method´s FE-simulation has been carried out. Strains, relieved on the 
top face of the core, have been measured for two types of loading boundary conditions, in 
order to determine calibration factors. Table 2 contains magnitudes of strains, measured in 
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case of the biaxial state of uniform stress (εaij = εbij = εcij = εij), see Fig. 6a. Appropriate 
calibration factors aij, calculated from measured strains by the Eq. (7), are shown in Table 3a. 
The last column of the Table 2 represents the sum of all strain increments, caused by the unit 
stress σj = 1 MPa, acting in every drilled layer (see Fig. 2). This sum ∑εij = ei is a necessary 
part of residual stress determination by the Eq. (19). 

Table 2. Relieved strains measured by the FE-simulation of the biaxial state of uniform residual stress 
εij [1]  j=1  2  3  4  5  6  7  8  ei = ∑εij 
i=1  ‐3.03E‐07  ‐3.03E‐07 
2  ‐4.94E‐07  ‐2.44E‐07  ‐7.39E‐07 
3  ‐6.28E‐07  ‐3.66E‐07  ‐2.12E‐07  ‐1.21E‐06 
4  ‐7.33E‐07  ‐4.52E‐07  ‐3.13E‐07  ‐1.99E‐07  ‐1.70E‐06 
5  ‐8.23E‐07  ‐5.22E‐07  ‐3.84E‐07  ‐2.97E‐07  ‐2.03E‐07  ‐2.23E‐06 
6  ‐8.92E‐07  ‐5.76E‐07  ‐4.36E‐07  ‐3.58E‐07  ‐3.02E‐07  ‐1.90E‐07  ‐2.75E‐06 
7  ‐9.50E‐07  ‐6.21E‐07  ‐4.79E‐07  ‐4.06E‐07  ‐3.66E‐07  ‐2.95E‐07  ‐2.12E‐07  ‐3.33E‐06 
8  ‐9.93E‐07  ‐6.55E‐07  ‐5.11E‐07  ‐4.41E‐07  ‐4.10E‐07  ‐3.54E‐07  ‐3.35E‐07  ‐2.48E‐07  ‐3.95E‐06 

Table of strains, measured by the simulation of pure shear state of uniform stress is not 
included in this scope. Corresponding calibration factors bij, calculated by the Eq. (9) and 
necessary for solving Eqs. (20, 21), are shown in Table 3b. 

Represented results are valid only for dimension of the groove´s outer diameter  
D = 18 mm, groove´s width h = 2 mm and total depth of drilled ring-groove H = 5 mm. 
Furthermore, results are valid for the groove made by n = 8 increments, with the depth 
distribution according to Table 1 and for the FR-5-11-3LT strain gauge rosette.  

Table 3a. Calibration factors aij for optimized depth increment 
aij [1] j=1  2  3  4  5  6  7  8 

i=1  ‐0.0318   
2  ‐0.0519 ‐0.0257   
3  ‐0.0659 ‐0.0384 ‐0.0222   
4  ‐0.0770 ‐0.0474 ‐0.0329 ‐0.0208   
5  ‐0.0864 ‐0.0548 ‐0.0403 ‐0.0312 ‐0.0213   
6  ‐0.0937 ‐0.0605 ‐0.0458 ‐0.0376 ‐0.0317 ‐0.0200   
7  ‐0.0998 ‐0.0652 ‐0.0503 ‐0.0426 ‐0.0384 ‐0.0310 ‐0.0223   
8  ‐0.1042 ‐0.0688 ‐0.0537 ‐0.0463 ‐0.0431 ‐0.0372 ‐0.0352 ‐0.0261 

Table 3b. Calibration factors bij for optimized depth increment 
bij [1] j=1  2  3  4  5  6  7  8 

i=1  ‐0.0300
2  ‐0.0520 ‐0.0263
3  ‐0.0670 ‐0.0410 ‐0.0244
4  ‐0.0793 ‐0.0515 ‐0.0374 ‐0.0247
5  ‐0.0903 ‐0.0605 ‐0.0469 ‐0.0383 ‐0.0280
6  ‐0.0998 ‐0.0681 ‐0.0544 ‐0.0473 ‐0.0429 ‐0.0301
7  ‐0.1092 ‐0.0756 ‐0.0616 ‐0.0554 ‐0.0539 ‐0.0481 ‐0.0414
8  ‐0.1198 ‐0.0839 ‐0.0693 ‐0.0636 ‐0.0641 ‐0.0617 ‐0.0696 ‐0.0830 

The residual stress´ magnitudes si = σ1i = σ2i, corresponding to the every drilled ith layer, 
in case of considered biaxial state of uniform stress, are shown in Table 4. They have been 
calculated according to Eq. (19), by using sum of strains ∑εij = ei from Table 2 and by using 
calibration factors aij shown in Table 3a.  
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Table 4.  Re-calculated stress components for the biaxial state of uniform residual stress 
si [MPa]  j=1  2  3  4  5  6  7  8 

i=1  1.00 
2  1.49  1.00 
3  1.92  1.58  1.00 
4  2.31  2.13  1.63  1.00 
5  2.71  2.69  2.30  1.68  1.00 
6  3.09  3.23  2.95  2.37  1.63  1.00 
7  3.50  3.83  3.67  3.15  2.38  1.72  1.00 
8  3.98  4.51  4.50  4.06  3.29  2.65  1.74  1.00 

The residual stresses´ results, located on the diagonal in Table 4, proove the correctness 
of used equations. In case of non-uniform residual state of stress distribution, Eqs. (19÷21) in 
order to determine the principal residual stresses σ1i and σ2i by Eq. (22), must be calculated all 
together. 

5. Conclusion 
This paper described how application of the ring-core method with theory of the integral 
equation method and the finite element method could be used for the numerical simulation and 
subsequent determination of uniform or non-uniform residual state of stress. In order to 
describe the non-uniform residual state of stress by the integral equation method a numerical 
calibration factor´s matrices a and b, which are lower triangular, have been determined. For 
this reason, two types of loading conditions have been applied to the FE-model. Appropriate 
equations to evaluate particular principal residual stresses σ1j ,σ2j (αj = 0°), acting in jth layer, 
when groove has i = 1,…, n depth increments and the principal residual stresses σ1i and σ2i, 
corresponding to the ith layer of drilled groove, have been demonstrated for optimized step 
distribution. 
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