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Adaptive Control of TITO System Using Delta Model 
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Abstract: This paper presents the design of an adaptive controller for a two input – two output 
(TITO) system using delta models. This controller has been verified by simulation and real time 
control of a non-linear laboratory model CE108 - coupled drives apparatus. The recursive least 
squares method is used in identification part of this controller. The synthesis is based on a 
polynomial approach. The results of the simulation and the real-time experiments are also given. 
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1. Introduction 
Many technological processes require that several variables relating to one system are 
controlled simultaneously. Each input may influence all system outputs. The design of a 
controller able to cope with such a system must be quite sophisticated. There are many 
different methods of controlling multivariable systems. Several of these use decentralized PID 
controllers [1], others apply single input-single output (SISO) methods extended to cover 
multiple inputs [2]. All these methods gave satisfactory results but controller tuning is 
difficult. For example, Ziegler-Nichols method can be used to set controller parameters. This 
method is very simple but the disadvantage of this method is that the system has to bring up 
into unstable state. Here polynomial theory approach is used to control a multivariable system 
[3]. The polynomial theory approach is the way how to make controller tuning easier. 

2. Delta models and their identification 
If G(s) is the transfer function of a continuous-time dynamic system (s is a complex variable), 
then the following expression for the discrete transfer function with the zero - order holder is 
valid 

 
( )11( )

G szG z Z L
z s

−⎧ ⎫− ⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (1) 

This step transfer function (1) is a rational polynomial function with variable z. The 
simple model structure, easy recursive identification using measurable data, suitability for the 
synthesis of the discrete control loop as well as for the description and expression of different 
types of stochastic process, including disturbance modelling, are all advantages of the z – 
transform function. 
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The step z - transfer functions have some disadvantages when the sampling period 
decreases. The disadvantages of the discrete models can be avoided by introducing a more 
suitable discrete model. The δ - model, where operator δ converges with decreased sampling 
period T0 to a differential operator p is best suited to this purposes. 
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T

p
→

δ =  (2) 

One of approaches to the design of these new discrete δ - models were publised in [4, 
5]. If the new variable γ is introduced then it is possible to prove [6], that equality 
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holds for interval 10 ≤≤ α . By substituting α in equation (3) we obtain an infinite 
number of new δ - models. This paper will only be concerned with the forward  δ - model  
(α  =  0). The δ - models will be used in process modelling for adaptive control based on the 
self - tuning controller (STC). The main idea of an STC is based on a recursive identification 
procedure and selected control synthesis. For this reason it is necessary to apply suitable 
recursive identification algorithm to this model. To parameters estimates of the δ  - model, the 
recursive least squares method (RLSM) with directional forgetting is applied. 

3. Description of TITO system 

 
Fig. 1. A two input – output system -  the “P” structure 

 

The transfer matrix of the system is 

 11 12

21 22

G
G G
G G

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (4) 

It is possible to assume that the system is described by the matrix fraction 

 ( ) ( ) ( ) ( ) ( )1 1
1 1G A B B A− −γ = γ γ = γ γ  (5) 

Where polynomial matrices A∈Rnn[γ], B∈Rnm[γ] are the left indivisible decomposition 
of matrix G(γ) and matrices A1∈Rmm[γ], B1∈Rnm[γ] are the right indivisible decomposition. 

The matrices of the discrete model are 
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 ( ) ( )
2

1 2 3 41 2 3 4
2

5 6 7 85 6 7 8

,A B
γ + α γ + α α γ + α

γ =
α γ + α γ + α γ + α

β γ + β β γ + β⎡ ⎤ ⎡ ⎤
γ =⎢ ⎥ ⎢ ⎥β γ + β β γ + β⎣ ⎦⎣ ⎦

 (6) 

and the differential equations of the model are 

 

( ) ( ) ( ) ( )
( ) ( )
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δ δ δ δ

δ δ
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δ δ δ δ

δ δ

δ δ δ

= −α − − α − − α −

−α − + β − +

+β − + β − + α −

= −α − − α − − α −

−α − + β − +

+β − + β − + β −

−

−  (7) 

4. Designing 2DOF control 
The 2DOF control structure contains also a feedforward part. 

P-1R

P-1Q B1A1
-1

A-1C

-

U Y

W V

 
Fig. 2. Block diagram of the 2DOF control system 

In the same way as the controlled system, the transfer matrices of controllers take the 
form of matrix fractions 

 ( ) ( ) ( ) ( ) ( )1 1
1 1G P Q Q PFB

− −γ = γ γ = γ γ  (8) 

 ( ) ( ) ( ) ( ) ( )1 1
1 1G P R R PFW

− −γ = γ γ = γ γ  (9) 

Generally, the vector of input reference signals W  is given by 

 ( ) ( ) ( )1W F hw w
−γ = γ γ  (10) 

and also, the vector of input disturbances is given as 

 ( ) ( ) ( )1V F hv v
−γ = γ γ  (11) 

Here, the reference signals and disturbances are considered from a class of step 
functions. In this case ( ) ( ),h hw vγ γ  are vectors of constants. ( )Fw γ , ( )Fv γ  taking the 
following form 

 ( ) ( )
0

0
F Fw v

γ⎡ ⎤
γ = γ = ⎢ ⎥γ⎣ ⎦

 (12) 
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The block diagram leads to an equation for the control law ( γ  will be omitted from 
some operations for the sake of simplification) 

 1 1 1 1U P F RW P F QY− − − −= −  (13) 

and the system output 

 1 1
1 1Y B A U A CV− −= +  (14) 

From (13) and (14) is possible to derive following equation 

 ( ) ( )1 1 1
1 1 1 1 1 1U A PA QB A PA QB QA CV− − −= + − +  (15) 

where 

 ( )1 1PA QB Dm+ =  (16) 

From (15) and (14) is possible to derive following equation for the system output 

 ( )1 1
1 1Y B D RW QA CV A VCm

− −= − +  (17) 

The control error is given as 

 E W Y= −  (18) 

From (17) and (18) we obtain finite equation for the control error 

 ( ) ( )1 1 1
1 1E I B D R W B D Q I A CVn m m n

− − −= − − −  (19) 

All signal have to contain 1Dm
−  (determinant of this matrix is characteristic polynomial), 

so following modification must be used. 

 1 1
1 2B D D Bm n

− −= %  (20) 

 ( ) ( )1 1 1
2 2E D D B R W D B Q D A CVn n n n

− − −= − − −% % % %  (21) 

Requirement for disturbance rejection will be fulfilled if all numerators in vector (11) 
are eliminated. 

 1P F P= %  (22) 

where 

 1 1F Inf=  (23) 

1f  is a polynomial. It is divisible by all the elements of matrix Fv . 

Requirement for asymptotic tracking will be fulfilled if exist following polynomial 
matrix 

 2 2F Inf=  (24) 

and following equation is fulfilled 

 2 2D B R TFn − =%  (25) 

Where 2f  is polynomial. It is divisible by all the elements of matrix Fw . 

It is used this modification for reducing the number of necessary operations 
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 1 1 1
1 1D NA D A Nm m

− − −= ⇒ =  (26) 

where matrix ( ) [ ]22N Rγ ∈ γ  is stable diagonal polynomial matrix and takes the form 

 ( ) ( )
( )( )

1 2

1 2

0
0

N
⎡ γ + α γ + α ⎤

= ⎢ ⎥γ + α γ + α⎣ ⎦
 (27) 

The roots of this polynomial matrix are the ruling factor in the behaviour of the closed 
loop system. They must be inside the circle with the centre point at point –1/T0 with the radius 
1/T0 if the system is to be stable. 

Substitute (26) to (20) 

 1 1 1
1 1 2B A N D Bn

− − −= %  (28) 

Equation (5) is valid 

 1 1 1
2 2,A N B D B D NA B Bn n

− − −= ⇒ = =%  (29) 

Then both diophantine equations are given as 

 1 1 1

2

PF A QB NA
TF BR NA

+ =
+ =

 (30) 

Polynomial matrices of left matrix fraction of the system are defined in the form 

 ( ) ( )
2

9 10 11 129 10 11 12
1 12

13 14 15 1613 14 15 16

,A B
β γ + β β γ + β⎡ ⎤γ + α γ + α α γ + α ⎡ ⎤

γ = γ =⎢ ⎥ ⎢ ⎥β γ + β β γ + βα γ + α γ + α γ + α ⎣ ⎦⎣ ⎦
 (31) 

The coefficients of matrices are given by solving matrix equation 

 1 1 0BA AB− =  (32) 

The structure of polynomial matrices , ,P Q R  and T  were chosen so that the number of 
algebraic equation resulting from the solution of the diophantine equation using the uncertain 
coefficients method. The matrices ,P Q  and R  are matrices of controller. The matrix T  
resulting from the solution of diophantine equation (30) is not useful. 

 

( ) ( )

( )

( )

1 2 1 2

3 4 3 4

2 2
1 2 3 4 5 6

2 2
7 8 9 10 11 12

3 2 2
1 2 3 4 5 6
2 3 2

7 8 9 10 11 12

T

P R

Q

t t t t t t

t t t t t t

p p r r
p p r r

q q q q q q
q q q q q q

γ + γ + γ + γ + γ +
γ =

γ + γ + γ + γ + γ +

γ + γ +⎡ ⎤ ⎡ ⎤
γ = γ =⎢ ⎥ ⎢ ⎥γ + γ +⎣ ⎦ ⎣ ⎦

⎡ ⎤γ + γ + γ + γ +
γ = ⎢ ⎥

γ + γ + γ + γ +⎣ ⎦
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (33) 

Solving the diophantine equations (30) defines a set of algebraic equations which we 
use to obtain the unknown controller parameters. 

5. Recursive identification 
The algorithms designed here were incorporated into an adaptive control system with 
recursive identification. The recursive least squares method proved effective for self-tuning 
controllers and was used as the basis for this algorithm. 
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The parameter vector is completed as shown below: 

 ( ) 1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8

Θ T kδ

α α α α β β β β⎡ ⎤
= ⎢ ⎥α α α α β β β β⎣ ⎦

 (34) 

The data vector is 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
[ 1 , 2 , 1 , 2 ,1 1 2 2

1 , 2 , 1 , 1 ]1 1 2 2

ΦT k y k y k y k y k

u k u k u k u k

= − − − − − − − −δ δ δ δ δ

− − − −δ δ δ δ
 (35) 

The parameter estimates are actualized using the recursive least squares method plus 
directional forgetting. 

6. Laboratory experiment 
The verification of designed TITO controllers in laboratory conditions operating in real time 
has been realized using experimental laboratory model CE 108 - couples drives apparatus. 
This apparatus is based on experience with authentic industrial control applications. It allows 
us to investigate the ever-present difficulty of controlling the tension and speed of material in 
a continuous process. The process may require the material speed and tension to be controlled 
to within defined limits. Examples of this occur in the paper-making industry, strip metal and 
wire manufacture and, indeed, any process where the product is manufactured in a continuous 
strip. 

A continuous flexible belt replaces the industrial type material strip. The principle 
scheme of the model is shown in the Fig. 3. It consists of three pulleys, mounted on a vertical 
panel so that they form a triangle resting on its base. The two base pulleys are directly 
mounted on the shafts of two nominally identical servomotors and the apparatus is controlled 
by manipulating the drive torques to these servomotors. The third pulley, the jockey, is free to 
rotate and is mounted on a pivoted arm. The jockey pulley assembly, which simulates a 
material workstation, is equipped with a special sensor and tension measuring equipment. It is 
the jockey pulley speed and tension which form the principle system outputs. The belt tension 
is measured indirectly by monitoring the angular deflection of the pivoted tension arm to 
which the jockey pulley is attached. 

The controller output variables are the inputs to the servomotors and the process output 
variables are the tension and speed at the workstation. There are interactions between the 
control loops. 

The task was to apply the methods we designed for the adaptive control of a model 
representing a non-linear system with variable parameters which is, therefore, impossible to 
control deterministically. Adaptive control using recursive identification with 2DOF controller 
was performed. 
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Fig. 3. Principal scheme of CE 108. 

The right side control matrix N  was chosen as follows 

 ( )
2 8.750 19.125 0

20 8.750 19.125
N

γ + γ +
γ =

γ + γ +

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (36) 

The sampling period was chosen T0 = 0.2 sec. Process output variable y1 is the speed 
and process output variable y2 is the tension. The variables u1 and u2 are the controller outputs–
inputs to the servomotor. 

The time responses of the control are shown in Fig. 4, Fig. 5. 
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Fig. 4. The adaptive control with 2DOF 

controller 
Fig. 5. The adaptive control with 2DOF 

controller − controller output 

7. Conclusion 
The adaptive control of two-variable system based on polynomial theory was designed. The 
designs were simulated and used to control a laboratory model. The simulation results proved 
that these methods are suitable for control of linear system. The control tests on the laboratory 
model gave satisfactory results despite the fact that the non-linear dynamics was described by 
a linear model. 
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