
 

Experimental Stress Analysis 2011, June 6 - 9, 2011 Znojmo. Czech Republic. 

  

Methods of Micromechanics and Nanoindentation Applied to 
Heterogeneous Structural Materials 

Jiří Němeček1, Vlastimil Králík2, Jaroslav Vondřejc3 & Jitka Němečková4 

Abstract: This paper is devoted to the assessment of effective elastic properties on several 
typical structural composites with heterogeneous microstructure. Nanoindentation is utilized to 
measure intrinsic phase properties at the scale below one micron. Statistical approach and 
deconvolution methodology are applied. Based on nanoindentation data, micromechanical 
properties are up-scaled (homogenized) within the representative volume element (RVE) by 
means of an analytical method and numerical FFT-based scheme. Good correlation of the 
methods was found for the tested materials due to the close-to-isotropic nature of the composites 
in the RVE. 
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1. Introduction 
Structural materials such as concrete, gypsum, plastics, wood and even metals are often 
characterized by a heterogeneous nature on different length scales (10-9-100 m). Traditionally, 
their mechanical properties are assessed from macroscopic tests that can only describe overall 
(averaged) properties like overall Young’s modulus or strength. Nowadays, it is possible to 
access also lower material levels and assess small-scale properties of individual material 
components. An exclusive role in this micromechanical testing is played by 
nanoindentation [1]. This technique provides mechanical data for very small volumes (nm-
µm) and intrinsic material phase properties can be evaluated. 

Wide theoretical background has also been laid in the field of micromechanics together 
with the development of classical composites. Micromechanical approaches are applied for 
matrix-inclusion problems to search for effective properties of the whole representative 
volume element (RVE) [2]. Although, the theoretical development in micromechanics is 
tremendous the knowledge of the material microstructure and its micromechanical properties 
is a key factor in obtaining relevant results. 

In this paper, we deal with the micromechanical prediction of the effective elastic 
properties for several structural materials on a scale of several hundreds of micron. Simple 
analytical and more complex numerical approaches are utilized. 
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2. Nanoindentation and evaluation of micromechanical data 
The principle of nanoindentation lies in bringing a very small tip to the surface of the material 
to make an imprint. In this study, three-sided pyramidal (Berkovich) diamond indenter was 
used. The depth of penetration is usually very small (several tens to hundreds of nm) to access 
individual material phases. The affected volume from which the mechanical response is 
measured can be estimated as 3× the penetration depth. In our case the penetration depths 
were kept within 300 nm and thus, the affected volumes were below 1 µm3. The loading 
history usually contains loading, holding and unloading periods. Standardly, elastic properties 
are evaluated for individual indents using analytical formulae, e.g. Oliver and Pharr 
methodology [3], which account for an elasto-plastic contact of a conical indenter with an 
isotropic half-space as: 
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in which Er is the reduced modulus measured in an experiment, A is the projected contact area 
of the indenter at the peak load, β is geometrical constant (β=1.034 for the used Berkovich tip) 
and dP/dh is a slope of the unloading branch evaluated at the peak. Elastic modulus E of the 
measured media can be found using contact mechanics which accounts for the effect of non-
rigid indenter as: 
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in which ν is the Poisson’s ratio of the tested material, Ei a νi are known elastic modulus and 
Poisson’s ratio of the indenter. 

For heterogeneous structural materials, the nanoindentation data are often measured in a 
large grid (Fig. 1) to cover the material heterogeneity. The distinction of the chemically and/or 
mechanically different material phases is often not possible on the microlevel (<1 µm). It is, 
therefore, desirable to describe the material mechanical properties in a statistical sense. To 
assess individual phase properties, so called statistical deconvolution can be employed [4, 5]. 
In this method, experimental data are analyzed from the frequency plots. Mean elastic 
properties as well as phase volume fraction are estimated based on the best fit of the 
experimental data with a limited number of Gauss distributions (Fig. 3). 

 
Fig. 1. AFM scan of indentation matrix on an aluminum alloy 
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3. Methods of micromechanics 
In order to describe heterogeneous systems and their effective properties in a statistical sense, 
representative volume element (RVE) have been previously introduced [2]. RVE statistically 
represents a higher structural level of the material and serves for evaluation of the effective 
(homogenized) properties within the defined volume. It includes all microstructural 
inhomogeneities that should be substantially smaller than the RVE size. 

Different assumptions on the geometry of inclusions, loading and boundary conditions 
can be utilized over the RVE to assess effective composite properties which leads to 
derivation of different analytical or numerical methods. RVE with substantially smaller 
dimensions than the macroscale body allows imposing homogeneous boundary conditions 
over the RVE. This leads to constant stress/strain fields in individual microscale components 
of ellipsoidal shapes [6]. Effective elastic properties are then obtained through averaging over 
the local contributions. Various estimates considering special choices of the reference medium 
known as rule of mixtures, Mori-Tanaka method or self-consistent scheme can be used [2]. 
For the case of composite material with prevailing matrix and spherical inclusions Mori-
Tanaka method [7] was previously found to be simple but powerful tool to estimate effective 
composite properties also for structural materials and was used in this study. 

Local strain and stress fields in RVE can also be found by numerical methods like finite 
element method or method based on Fast Fourier Transformation (FFT) [8,9]. The former one 
was proved to be reliable and computationally inexpensive method which only utilizes 
mechanical data in discretization (grid) points that perfectly match with the concept of 
nanoindentation. Therefore, the FFT method was chosen for our purposes. 

3.1.  Comparison of analytical and numerical schemes 

Simple analytical methods (Mori-Tanaka) work with the assumption of isotropic effective 
properties. Such assumption is usually acceptable for the disordered structural materials. The 
comparison of an analytical and FFT schemes includes an assessment of the stiffness matrix 
(here in Mandel’s notation) for isotropic material assuming plane strain conditions (equally 
with the FFT scheme) as: 
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in which Eeff and νeff are effective Young’s modulus and Poisson’s ratio, respectively. The 
difference between the analytical and numerical stiffness matrices can be expressed using a 
stiffness error norm: 
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in which FFT
effL  is the effective stiffness matrix computed by the FFT method. 

4. Materials 
Several heterogeneous structural materials were selected for this study. Firstly, effective 
elastic properties were estimated for cement paste which is a basic component of a wide range 
of cementitious composites. Cement paste was prepared from Portland cement CEM-I 42,5 R 
(locality Mokrá, CZ) with water to cement weight ratio equal to 0.5. Samples were stored in 
water for several years. Therefore, high degree of hydration can be anticipated in the samples. 

273



 

The microstructure of cement paste includes several chemical phases, namely calcium-silica 
hydrates (C-S-H), calcium hydroxide Ca(OH)2, residual clinker, porosity and some other 
minor phases. 

Secondly, dental gypsum (Interdent®) was chosen as a model representative for gypsum 
based materials. Samples were prepared with water to gypsum ratio 0.2. From the chemistry 
point of view, every gypsum binder is composed of three main components – calcium sulphate 
anhydrite (CaSO4) in different modifications, calcium sulphate hemihydrate (CaSO4·½H2O) – 
α- or β-gypsum, and calcium sulphate dihydrate (CaSO4·2H2O). The gypsum binder consists 
also some impurities and additives in case of natural sources. The Interdent gypsum is a low-
porosity purified α-gypsum used for dental purposes. 

Thirdly, an aluminium alloy was studied. The material consisted of aluminium 
intermixed with 1.5 wt.% of calcium and 1.6 wt.% TiH2. The material is used for the 
production of lightweight aluminium foams. 

Microstructures of the selected materials are shown in Fig. 2. Dark areas can be 
attributed to the microporosity in the matrix whereas lighter areas belong to individual 
microstructural components. The images show on the heterogeneity of the samples in tested 
RVEs whose dimensions are ~100-200 µm. 

   
Fig. 2. Microstructures of cement paste (left), dental gypsum (mid) and aluminium alloy (right) 

5. Results and discussion 
Cement paste was indented by a grid consisting of 20×20=400 indents with 10 μm spacing 
which yields the RVE size ~200 µm. The resulting frequency plot of elastic moduli was 
deconvoluted into five mechanical phases as specified in Table 1. The phases correspond to 
the peaks showed in Fig. 3. They are denoted as A=low stiffness phase, B=low density C-S-H, 
C=high density C-S-H, D=Ca(OH)2, E=clinker. In this case, the notation of mechanically 
distinct phases matches well with the cement chemistry. 

Nanoindentation data received from gypsum samples showed on crystalline nature of 
the composite with an anizotropic character. Two locations were tested. Each place was 
covered by 15×12=180 indents with 15 μm spacing. The RVE size is then ~200 μm. Since the 
gypsum crystals are dispersed in the sample volume in a random manner, surface 
measurements by nanoindentation show high scatter. However, several characteristic peaks 
can be distinguished in the frequency plots of elastic moduli and thus mechanically distinct 
phases separated. Three peaks (low stiffness, dominant and high stiffness phases) were 
identified (Fig. 3 and Table 2). 

Two mechanically distinct phases were separated in the statistical deconvolution on Al-
alloy sample. Results from 200 indents (two locations 10×10 indents) with 10 μm spacing 
were evaluated. The RVE size is ~100 μm in this case. The dominant phase is denoted as Al-
rich zone, whereas the lower stiffness phase is denoted as Ca/Ti-rich area in Fig. 3 and 
Table 3. 

274



 

Based on the nanoindentation data after deconvolution analytical homogenization 
scheme (Mori-Tanaka) was employed for the assessment of effective RVE elastic properties. 
Resulting elastic properties of studied materials are shown in Tables 1-3. 

   (a) 

(b) 

 (c) 

Fig. 3. Deconvolution of modulus of elasticity frequency plots into mechanical phases on (a) cement paste, 
(b) gypsum, (c) Al-alloy 

Table 1. Data received from statistical deconvolution (input) and homogenized (output) values on cement paste. 

 Phase E (GPa) Poisson’s ratio (-) Volume fraction 

INPUT Low stiffness 7.45 0.2 0.0105 

 Low density C-S-H 20.09 0.2 0.6317 

 High density C-S-H 33.93 0.2 0.2634 

 Ca(OH)2 43.88 0.3 0.0461 

 clinker 130 0.3 0.0483 

OUTPUT M-T homogenized value 25.3308 0.2067 1.0 
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Table 2. Data received from statistical deconvolution (input) and homogenized (output) values on gypsum. 

 Phase E (GPa) Poisson’s ratio (-) Volume fraction 

INPUT Low stiffness 19.357 0.2 0.043750 

 Dominant 37.234 0.2 0.712500 

 High stiffness 56.277 0.2 0.243750 

OUTPUT M-T homogenized value 40.000 0.2 1.0 

 

Table 3. Data received from statistical deconvolution (input) and homogenized (output) values on Al-alloy. 

 Phase E (GPa) Poisson’s ratio (-) Volume fraction 

INPUT Al-rich zone 61.882 0.35 0.637681 

 Ca/Ti-rich zone 87.395 0.35 0.362319 

OUTPUT M-T homogenized value 70.083 0.35 1.0 

 

The comparison of stiffness matrices from analytical Mori-Tanaka scheme, i.e. using 
Equation (3), and from FFT homogenization are given in the following. Equation 5 contains 
results for cement paste, Equations 6 for gypsum and Equation 7 for Al-alloy. The stiffness 
values are given in GPa. Respective error norms are computed in Equation 8. 
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 Errors: 0.071045=δcement , 0.075138=δgypsum , 0393058.0=− δalloyAl  (8) 

It is clear from the above equations that both simple analytical and advanced FFT-based 
method give comparable results in our case. It is primarily due to the close-to-isotropic nature 
of the tested materials within the specified RVE. Even if the stiffness matrices computed by 
FFT scheme contain some non-zero off-axis terms, they are very small which confirms the 
previous statement. The best agreement of the methods was reached on Al-alloy (error<4%) 
which can be attributed to the fact that both material phases (Al-rich, and Ca/Ti-rich zones) are 
much more homogeneous compared to the phases that appear in cement paste or gypsum. But 
even in case of cement and gypsum the errors (7.1% and 7.5%) are still acceptable and show 
on good agreement of the results received from different methods. 

6. Conclusions 
It was proved in this study that nanoindentation can be used for the assessment of 
micromechanical parameters of intrinsic material constituents at the scale below one micron. 
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The use of statistical indentation gives access to both phase properties as well as volume 
fractions. Three typical structural materials (cement paste, gypsum and Al-alloy) with 
heterogeneous microstructures have been tested. Effective properties of their RVEs (100-
200 µm) were successfully determined with analytical Mori-Tanaka scheme and numerical 
FFT-based method. The performance of both approaches was in good agreement for the tested 
materials. Derived stiffness matrices can be further used in standard computational procedures 
(e.g. finite element models). 
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