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Everything you always wanted to know about stress but were 
afraid to ask 

Miloslav Okrouhlík1  

Abstract: The author ponders about meaning of stress and of other mechanical variables that are 
consensually defined and cannot be grasped, described and/or measured directly. 
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1. Introduction 
The term stress in current communication is understood differently from the way it is used in 
mechanical engineering practice. The Cambridge International Dictionary offers for the item 
stress the following:  Great worry caused by a difficult situation or a force that acts in a way 
which tends to change the shape of an object. Among many examples from the same source 
let's quote the one which might be considered amusing in our community, i.e. Yoga is a very 
effective technique for combating stress. Often the stress is being considered to be almost 
equivalent to strain as in: Many joggers are plagued by knee stress and foot strain caused by 
unsuitable footwear. Other sources offer similar explanations. An example taken from 
Wikipedia: We generally use the word 'stress' when we feel that everything seems to have 
become too much - we are overloaded and wonder whether we really can cope with the 
pressures placed upon us. Anything that poses a challenge or a threat to our well-being is a 
stress. Some stresses get you going and they are good for you - without any stress at all many 
say our lives would be boring and would probably feel pointless. However, when the stresses 
undermine both our mental and physical health they are bad. In this text we shall be focusing 
on stress that is bad for you.  In this paper, in contradistinction to the previous example that 
might invoke a gloomy mood in reader's mind, we will concentrate on meanings that are good 
to you, i.e. on mechanical stress (Spannung in German, contrainte in French, napětí in 
Czech). The IFToMM (International Federation for the Promotion of Mechanism and Machine 
Science) online dictionary gives a more acceptable explanation for the stress, i.e.: Limits of the 
ratio of force to the area it acts, as the area tends to zero. The definition of stress, being 
presented this way, however, says nothing about the distribution of the force 'above' the 
mentioned area. Furthermore, the mentioned dictionary defines stress by introducing a new 
term, namely force that is, in turn, specified as an action there, i.e.: Action of its surroundings 
on a body tending to change its state of rest or motion. Evidently a definition from the pen of 
a rigid body person. Other force definitions appearing in solid mechanics textbooks are not 
more comprehensive either and describe force rather circularly by its effects. A few examples 
are presented here. In  Encyclopaedia of Physics, Vol. III/1, Edited by Fluege, Springer, 
Berlin, 1960 on page 532 one finds an alleged  'dAlambert's quotation, i.e.: Force is only a 
name for the product of acceleration by mass. Similarly in the Theory and Problems of 
Continuum Mechanics by Mase, G.R., Schaum's Outline Series, Mc Graw Hill, 1970 one 
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finds: Forces are vector quantities which are best described by intuitive concepts as push or 
pull. 

In terms of proper and clear definitions the mechanical variables force and stress can be 
compared to the definition of time. St. Augustine in his Book 11 of Confessions ruminates on 
the nature of time, asking: What then is time? If no one asks me, I know: if I wish to explain it 
to one that asketh, I know not2. 

 So both time and stress (and force and other variables in mechanics not mentioned 
here) are defined consensually. We understand them rather intuitively; we might have 
problems to measure them directly, which – however – does not prevent us to purposefully use 
them in engineering practice regularly. No one would ever have a tendency to challenge them.  

2. Symmetry of stress tensor 
In continuum mechanics, stress is a measure of the internal forces acting within a deformable 
body. Quantitatively, it is a measure of the average force per unit area of a surface within the 
body on which internal forces act. These internal forces are produced between the particles in 
the body as a reaction to external forces applied on the body. Because the loaded deformable 
body is assumed to behave as a continuum, these internal forces are distributed continuously 
within the volume of the material body, and result in deformation of the body's shape. 

This nice definition, taken from http://en.wikipedia.org/wiki /Stress_(mechanics), we 
could gladly accept and start with. 

It was Claude-Luis Navier (1785 – 1836) who for the first time formulated equations of 
motions for a generic point of a continuous body. Augustin-Luis Cauchy (1789 – 1857) 
accepted the stress definition introduced by Adhémar Jean Claude Barré Saint-Venant (1797 – 
1886) and generalized and extended his ideas. For more details see [1]. 

In Oeuvres complètes d'Augustin Cauchy. Série 2, tome 8 from 1828 is Cauchy's 
contribution titled SUR LES EQUATIONS QUI EXPRIMENT LES CONDITIONS 
D'ÉQUILIBRE OU LES LOIS DU MOUVEMENT INTÉRIER D'UN CORPS ÉLASTIQUE 
OU NON ÉLASTIQUE3 where he defines the force quantities and writes them in the form  

CDE
DBF
EFA

. Today we would call them the components of stress tensor. It is worth noticing 

that from the very beginning Cauchy assumes that the stress components for a material point 
have a symmetric character4. In Cauchy's notation his famous equations of equilibrium have 
the form 

                                                 
2 Quid est ergo tempus? Si nemo ex me quaerat, scio; si quaerenti explicare velim, nescio. The quotation in Latin is 
taken from www9.georgetown.edu/faculty/jod/latinconf/11.html. 
3 See http://gallica.bnf.fr/ark:/12148/bpt6k90200c.image.f4.langEN.  
4 … pour corps solides considérés comme des systèmes de points materiels distincts les uns des autres, mais séparés 
par les distances très petites … he thus considers distinguishable material points with zero volumes, and thus infinite 
density, that are very close together.  Here, the limit approach from an elementary volume to a point is not yet 
considered.  
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Besides the equilibrium equations he also presents the equations of motion in his text. In 
today's notation they would read 

 ii
j

ij xb
x

&&ρρ
σ

=+
∂

∂
. (1) 

If inertia forces could be neglected, there is zero on the right-hand side and then Eqs. (1) 
become the equilibrium equations and are equivalent to original Cauchy's formula presented 
above. It should be reminded that the forces in continuum mechanics are related either to a 
unit of mass – then they are called body forces [N/kg] and denoted ib  or to a unit of volume – 
then they are called volumetric forces [N/m3] and denoted if . The relation between both 
types of forces is ii bf ρ= . This allows writing the Cauchy's equations in an alternative form 

 ii
j

ij xf
x

&&ρ
σ

=+
∂

∂
. (2) 

In today's textbooks we generally accept Cauchy's symmetry assumptions. Keeping the 
standard notation for the rest of the text we could proceed as follows. Deriving geometrical 
relations between the components of the stress tensor ijσ and the stress vector iT  we consider 
the material element to be a 3D body – a cube whose orientation in space is uniquely defined 
by out-pointing normals to its respective walls as shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Material element, components of stress tensor and stress vector 
 

When, however, the equations of motion are being conceived, we suddenly consider the 
3D cube as a body of infinitesimal size – approaching zero dimensions in a limit process – and 
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instead of six equations for a body in 3D space we take into account the equations considering 
the force equilibrium only. Couple equilibrium conditions – under the assumption that the 
stress levels across the elements' walls are constant and that there are no externally applied 
couples – are satisfied identically and there is no need to write them explicitely. 

Limiting our attention to 3D continuum with small strains and assuming that rigid body 
rotations can be neglected then there are three Cauchy equations (1), nine kinematic relations 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

=
i

j

j

i
ij x

u
x
u

2
1ε  (3) 

and nine equations representing constitutive relations, i.e. 
 klijklij C εσ = . (4) 

All together we have 15 equations for evaluating three displacement components iu , 
nine strain components ijε and nine stress components ijσ  – (3 + 9 + 9 = 21). This is, 
however, enough only if we take the symmetry of stress and strain tensors for granted – (3 + 6 
+ 6 = 15). 

To have a chance to discuss the symmetry of stress tensor let's recall the classical proof 
of symmetry as it appears in standard textbooks. It is based on conservation of angular 
momentum and goes as follows. 

Denoting the radius vector of a generic material point T
321 }{ xxxr = ,  the vector of 

surface forces it , the body forces ib , then for a continuous body – having volume V, surface S 
and density  ρ  – the conservation of angular momentum  can be expressed by 

( ) ( ) ( ) VbrtrVvr
t VSV

ddSd
D
D

∫∫∫ ×+×=×
rrrrrr

ρρ . 

By v
r

 we denote velocity and the scalar quantity t stands for time. Using the Cauchy 
relation jjnn et σ= ,  the Gauss theorem and the relation for the material derivative of 

momentum V
t

v
Vv

t V
i

V i d
D
D

d
D
D

∫∫ = ρρ we get 
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we can write 
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The terms denoted 1 and 2 cancel out, furthermore 0=∈ nmrmn vv and what remains is 

0d =∈∫ VmnV rmnσ . The last relation, independently of the volume considered, is satisfied 
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only if nmmn σσ = , i.e. if the stress tensor is symmetric. Quod erat demonstrandum – 
seemingly.  

Let's summarize. The described continuum model, in which moment equations are 
neglected, implicitly assumes that the material particle approaches a point in limit and that the 
forces between material particles are collinear and opposite. Furthermore, neither external nor 
body couples act upon the material element. Thus the stress tensor is symmetric only if all 
these assumptions are satisfied and the presented proof only confirms it. The above reasoning 
does not prove that the stress tensor is symmetric in general. One might have a temptation to 
claim that that the stress tensor need not be symmetric in nature. But stress is the conception 
of human mind – it was not discovered, it was invented. 

The notion of stress symmetry, deeply embedded into our minds, is fully acceptable for 
most of engineering tasks. And of course, the theorem of conjugate shear stresses, claiming 
that jiij σσ = , is based on the stress symmetry.  

3. Non-symmetric stress tensor 
The continuum model with a non-symmetric stress was considered by Cosserat's brothers. 
Eugène-Maurice-Pierre Cosserat (1866 – 1931) was a French mathematician and astronomer. 
He studied at École Normale École Normale Supérieure and later became the director of 
Toulouse astronomical observatory and a member of French Academy of Sciences. Together 
with his brother Françoise they studied – among other things – continuum mechanics 
problems.  

When analysing the equilibrium conditions of a material point they considered not only 
force-stress tensors ijσ expressed in [Pa] but the moment-tensors ijμ  in [Pa m] as well. A 2D 
sketch is in Fig. 2.  

 

 

    

 

 

 

 

 
Fig. 2. Force and couple components of stress tensor 

It is assumed that the interaction between neighbouring material particles is under way 
of both the force it  and the couple vectors im . The relation between stress and vector 
components is provided by an extension of what we today call the Cauchy relation i.e. 

jiji et σ= and jiji em μ= . 

Then, both force and couple contributions appear in equations of motion, i.e. 

ii
j

ij xf
x

&&ρ
σ

=+
∂

∂
and iiklikl

j

ij Ic
x

φσ
μ &&=+∈−
∂

∂
. 
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One could notice that besides the volumetric forces if  there are volumetric couples 

ic in equations of motion as well. The variable I denotes rotational inertia. In contradistinction 
to conventional continuum mechanics, based on symmetric stress tensors, one assumes that 
the material element has its space orientation which is uniquely prescribed by its translation 

iu  and rotations iϕ .The Cosserat strains are of two types. One could say the translation strain 
and the rotary strain that could be expressed followingly 

kijk
j

i
ij x

u
ϕε ∈+

∂
∂

=  and  
j

i
ij x∂

∂
=

ϕ
κ . 

Until relatively recently the relations describing Cosserat continnum were considered to 
be an intellectual whim of little practical importance. Now, the Cosserat theory becomes an 
effective tool for realistic modeling of so called nonlocal problems with materials where 
particle size effects have to be accounted for as for grains, fibres and cellular structures and 
where the interaction between particles is provided for not only by forces but by couples as 
well. 

Details concerning the numerical implementation of Cosserat tasks is in the contribution 
presented by Sluyse and de Borst in [2]  

4. Symmetric stress tensors for finite deformation world – true vs. engineering  
As mentioned before, in linear elasticity, based on infinitesimal strains and neglected rigid 
body motions, the stress is defined as a limiting ratio of an elementary force to an elementary 
area. It is implicitly assumed that the applied force rtΔ  belongs to the current (deformed) 

configuration, say Ct , while the area A0Δ  being loaded belongs to original (undeformed) 

configuration, say C0 . This way the engineering stress is defined. When the deformations, 
strains and rigid body motions are not infinitesimal, then the elementary force has to be related 
to elementary area AtΔ  in the deformed configuration, defining thus the true (sometimes 
called Cauchy) stress. The engineering and true stress vectors for both cases are 

A

t

A

t
0

00Δ
0

eng

Δ
Δlim rtt

→
==   and 

At

t

At
t
t

Δ
Δlim

0Δ

true rtt
→

== . 

One should notice that the upper left index associates the quantity to the configuration 
in which it is 'measured', while the lower left index identifies the configuration to which the 
quantity is related. Introducing normal vectors in reference and current configurations 
by ie0 and i

t e respectively, and using the Cauchy's relation, the corresponding engineering and 

true stress tensors ( ij
tσ0 and ij

t
tσ ) could be expressed by 

jij
t

i
t

i ett 0
00

eng σ==   and j
t

ij
t
ti

t
ti ett σ==true . 

For clarity we introduce the following self-explaining notations 

ij
t

ij σσ 0
eng =    and ij

t
tij σσ =true . 

The advantage of using the engineering stress is evident. Its calculation simply employs 
the body dimensions of non-deformed configuration and the consequent errors – due to small 
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displacements and strains – are acceptable. The engineering stress, however, is useless for 
nonlinear tasks where finite strains and rigid body rotations cannot be neglected.  

The conception and definition of true stress are quite clear, but its direct evaluation is 
impossible since the true stress depends on unknown geometry of the deformed configuration, 
which is result of the applied force which caused that deformation.   

It is, however, the true (Cauchy) stress, which we, the engineers, are only interested in. 
Often we are satisfied with its engineering approximation. Since, however, we are not able to 
evaluate the true stress we have to employ a trick invented by forefathers of continuum 
mechanics two centuries ago. Namely to solve matter indirectly, introducing various fictitious 
stress measures, as for example the first and the second Piola-Kirchhoff stress tensors. These 

stress measures are defined by means of fictitious forces, acting in C0
 configuration, that are 

systematically derived from those actually acting in the deformed configuration Ct (i.e. forces 
that are responsible for the deformation) with the intention that the invented new measures 
would be independent of coordinate system orientation and furthermore insensitive to rigid 
body motions. 

The procedure for deriving the above mentioned fictitious measures is based on the 
conservation mass theorem and on kinematic relations describing the deformation CC t→0 . 
If the Lagrangian formulation is used then the transformation process (i.e. the deformation) is 
defined by a function ),(0 txxx ji

t
i

t =  and if the Jacobian of the transformation, 

say 0det ≠= ijFJ , with ijF being the deformation gradient defined by 
j

i
t

ij
x
x

F 0∂

∂
= , then one 

could express the 'deformed' elementary line, say i
txd , in Ct , as a function of the same line, 

say ix0d ,  in the reference configuration C0 by means of jij
t

i
t xFx 0

0 dd = . 

Based on requirements (invariance to coordinate system orientation and rigid body 
motions) and using the above relations, a new measure – expressed in reference configuration 
– called the first Piola-Kirchhoff stress tensor and denoted 1PK

0 ij
tσ here, can be derived as a 

function of true stress. Without going to details, that can be found elsewhere, one can write 

true
0

0
1PK

0 σFσ t
t

t
t

t

ρ
ρ

= . 

This stress measure is not symmetric. To achieve the symmetry, being usual for other 
stress measures, a similar measure (called the second Piola-Kirchhoff stress tensor) is derived 
applying the relation between geometric quantities to applied forces as well. One then gets 

T
0

true1
0

0
2PK

0
−−= FσFσ tt

t
t

t
t

ρ
ρ . 

Even if the shown stress tensors have no physical meaning and cannot in any way be 
measured, they became useful tools for solving the nonlinear task of continuum mechanics, 
especially in cases where large strains and/or rotations prevails. Still, there is a hint of reality 
in them – in case of small strains and rotations the first and second Piola-Kirchhoff stresses 
approach the true stress which in turn tends towards the engineering stress. The stress 
measures require to be coupled with suitable energetically conjugate strain measures. In case 
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of the second Piola-Kirchhoff stress tensor it is the Green-Lagrange strain tensor that should 
be employed. But this is another story.  

For more details see [3]. 

5. Stress rates and conjugate stress and strain measures  
As mentioned before the stress measures mean nothing without energetically conjugate strain 
measures that are associated to them. This necessitates in expressing stress measures by means 
of their increments ( 2PK

0Δ σt ) instead of measures themselves, i.e 2PK
0σ
t . The stress rates are 

instantaneous values of stress measures. For example the second Piola-Kirchhoff stress rate 

tensor is defined by 
t

t

t
t

Δ
Δlim

2PK
0

0Δ
2PK

0
σσ

→
=& . The energetically conjugate strain rate in this 

case is the Green-Lagrange strain tensor. The tress rates are useful in efficient formulations of 
incremental forms of governing equations needed for expressing iterative processes required 
for reaching the sought after equilibrium conditions.  

The governing equations in rate forms are more elegant than the incremental ones, but 
when it comes to their algorithmization one have express the instantaneous values by 
increments since in a computer treatment of mathematic formulas we are not able to express a 
derivative of a function. It always has to be approximated numerically by increments.  

It should be reminded that the true stress rate cannot be directly used in iterative rate 
formulations since it is not, being dependent on coordinate system orientation, objective.  
That's there is plethora of other stress rates (and corresponding strain rates) defined in 
continuum mechanics literature and commonly used in commercial finite element packages. 
The Jaumann and Green-Naghdi stress rates are good examples. For more details see [4].  

The stress rates and properly chosen energetically conjugate strain rates present an 
interesting topic that is still under discussion in continuum mechanics community. The subject 
is rather tricky and is not yet fully understood by engineering community as documented by 
[5]. Another interesting paper devoted to this subject can be found in [6].   

6. Conclusions  
When mechanical quantities being defined by consent – as force, stress, energy, etc. – are 
treated a lot of assumptions are a priory accepted regardless whether analytical, numerical 
or/and experimental approaches are employed. This requires pondering a little bit about the 
proper meaning of terms and about basic definitions of mechanical variables we are using. 
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