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Abstract: This paper presents the hole-drilling measurement method corresponding to 

the E 837 standard method, but, at the same time, it is more universal. This method 

transforms the full stress tensor of the drilled hole position by the regression 

coefficients and describes the state of strains released in the hole surrounding, based 

on the hole center distance and its depth. The regress coefficients are not defined in 

the method concretely for the rosette but they are universal both for the isotropic 

Hooke’s materials and for the other measuring elements. The method defines the way 

for the processing of the released strains measured with a defined measuring element 

and involves naturally the influence of the drilled hole eccentricity and so it is 

possible, in the hole-drilling method, to apply measuring elements more simply, 

without determining their specified regression coefficients. 
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1. Decomposition theory of hole drilling method 

The theory of this experimental principle take advantage of the analytical 

Kirsch’s stress-state solution of a thin plate with a hole drilled through 

perpendicularly and uniaxially loaded by principal stress [1]. The thin plate in 

Cartesian coordinates x, y ,z under the loading by principal stress x is depicted in 

Fig. 1. On the surface of this plate are defined polar coordinates R,   stresses 

  ,,r  and strains r, θ,  , z .  
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We define the relative radius r = R/R0  1, where R0  is the hole radius and R is 

the arbitrary radius from hole center according to [2]. If a thin plate is (without a 

drilled hole) loaded by the principal stress x then stress state components  
 ,,r  

are described in Eqs. 1 in the polar coordinates R, . The Kirsch’s equations (Eqs. 2) 

describe the state of plane strain in the vicinity of the through hole of radius R0 

(Fig. 1). 
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Fig. 1. Components of the stress tensor and strain tensor in the drilled hole vicinity. 
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The change of straining induced by the hole drilling in comparison to the 

original state is defined by the difference of corresponding components of Eqs. (1) 

and (2) in Eqs. (3). In comparison with Eqs. (1), the Eqs. (2) include terms 

dependent on the drilled hole, which are left in the Eqs. (3) that are otherwise of a 

character similar to Eqs. (1) and (2).  

The Hole drilling strain-gage method used for the residual stress state 

identification is currently standardized by the E 837 international standard [3]. This 

hole drilling method theory is based on two parameters adjusted for particular 

designs of drilling rosettes and requires very accurate the experimental hole drilling. 

It is valid for isotropic Hooke’s materials with a known strain response to the 

drilling of the hole. The response is measured by strain gauges assembled to a 
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drilling rosette. The response function is similar to strains identified in the Kirsch’s 

solution of the thin plate with a hole as described in Eq. (3). The measurement 

properties of the rosettes during the hole drilling according to E 837 standard are 

considerably dependent on the accuracy of compliance with standardized conditions 

of the experiment. The drilled experimental holes are often eccentric with respect to 

the ideal position, which the standard theory assumes to be situated in the drilling 

rosette center. 

We expect, that the components of strain in the surroundings of the blind 

drilled hole as written in Eqs. (4) are analogous to Eqs. (3) of the straight-through 

hole. Let for the blind hole we also modify [4] all the seven polytropic terms of the 

complete Kirsch’s theory by seven parameters ck (r, z), which are dependent on the 

distance from the center of the drilled hole. The distance is described by the relative 

radius r and the depth z of the drilled hole. Regression coefficients c1,…c7 can be 

determined via regression of the results yield by FEM by the experiment test flat 

plate as depicted in Fig.1. The specimen is loaded with a unidirectional principal 

stress x collinear with the plate axis of symmetry. Further, the same specimen with 

a drilled hole produced by a drilling process is modelled by FEM as well, where the 

hole is normal to the test surface at the plate axis of symmetry.  
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By the way, a similar approach is also used by E 837 standard primarily for 

radial strain. If E stands for Young’s modulus and  for Poisson’s ratio, the changes 

of plane stresses r, θ,  can be used for any isotropic material for a calculation of 

changes related to strains r, θ,  and z (see Fig. 1) in a point on the plate using  the 

Hooke’s law matrix (5) for transformation the stress to the strain Eq. (6). A strain 

state on planes perpendicular to the surface can be set by an angular transformation, 

where the use of the first three components r, θ
,  in Eqs. (6) is sufficient, because 

of the principal strain z does not have any effect on it.  

The strain j tangential to the winding direction (see Fig. 1) of the measuring 

strain gage is derived from 
r
, 

θ
,  strains according to the transformation Eq. (7) for 

an acute angle φj. Subsequently it is expressed using goniometric functions of a 



 

 

double angle 2φj. The latter statement is a consequence of the fact that strain gages 

primarily measure along the winding tangent. We expect the direction of the 

principal stress x given by the angular parameter   and principal stress y angular 

parameter 2  , both measured from axis x. The bonded strain gauge reads the 

strain field of the contact surface. Therefore, the deformation under the strain-gauge, 

at a specified section of its winding, is proportional to the contribution of this 

winding section into the total signal measured with the strain-gauge. We set a unit 

vector in the direction of the principal stress x under the   in the first case and in 

the direction of the stress y under angle 2  . Relieved strain 
j  is multiplied 

with a unit dummy load vector introduced in the direction of principal stress and 

transformed to the winding direction using the strains gr   ,, of the winding 

point j. The both considered sensitivities ti of the i-th strain gauge to the strains 

relieved during the drilling can be formulated by average strain in the direction of 

the strain gauge winding according to Eqs. (8). The curvilinear integral of strain 

along the winding length wi has an argument including strain 
j . 
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The angle φj  (see Fig. 1 and  Eq. (7)) is function of the particular position of 

the winding point and is not a function of the parameter  . The strains 

grj   ,,,  normed by a unit vector are goniometric functions of the particular 

position of the winding point j and parameter   defining the position of the unit 

vector introduced to the direction of the principal stress. A system of at least three 

independent Eqs. (9) of i-th strain gauge signals i read in the vicinity of the drilled 

hole for unknown principal stresses x, y and the angle of their position . A 

superposition including effects of both principal stresses is done. 

)2( )(   iyixi tt     (9) 

2. Functions of regression coefficients 

The regress coefficients ck(r,z) defined in Eqs. (4) are dependent only on the 

radial distance r=R/R0 from the center O of the drilled hole and on the hole depth z. 

They can be therefore identified [5] by substituting Eqs. (4) into Eqs. (10) with the 

data   ,,r employed in the FEM analysis of drilling in i-th points of the surface 

layer of the first hole quadrant mapped with the coordinates x,y as depicted in Fig.1.  
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The region of radii used for identification is assumed according the possible 

drilling experiment sensitivity in the relative radius interval 1 r 5 and in the angle 

coordinate interval 0 α π/2. The possible degrees of freedom, i.e., the unknown 

coefficients c1,…c7, can be determined by using the least squares method in Eqs. 

(11), which minimizes the residual errors between the analytical and numerical 

methods in the comparative points i of the numerical model from Fig. 1. This task 

can be transformed by the minimization of three independent functionals F1, F2 and 

F3, yielding the seven linear equation system in the form of Eqs. (12). The 

conditions for the minimization of the functionals F1, F2 and F3 can be separated 

into the three independent linear equation systems as stated in Eqs. (13a,b,c). The 

first three equations follow from F1, other two from F2 and, finally, the sixth and 

seventh equations from F3. The unknown coefficients c1,…c7 can be determined 



 

 

from many possible initial point combinations, which can be selected from many 

various angle coordinates α in the interval 0<αk<π/2 for concrete depth z. 
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The regression model, introduced in Eqs. (10), contains in the functionals F1 

and F3 the pairs of coefficients c2, c3 and c6, c7, respectively,  which virtually 

introduce a linear dependence into the equation system, when using data measured 

on one particular radius. In order to obtain a non-singular equation system, it is 

required to use equations assembled at several radii. The number of equations 

increases linearly with the number of different radii used which smoothes the 

coefficient functions. For a certain drill hole depth z, we approximate the 



 

 

coefficients values calculated from individual stripes by the coefficient regression 

functions, as illustrated in Fig. 2. These are further used in the mathematical 

description of the method. The regression coefficients c1-7 cannot be calculated when 

using solely data obtained at a single radius because the model structure would 

generate a linearly dependant equation system. But it also implies that the model can 

be simplified by the replacement of c2, c3 and c6, c7 coefficient couples by two new 

coefficients 
62 ,cc . The equation system using the 

65421 ,,,, ccccc  is introduced in 

Eq. (14). This equation system can be assembled by using data from a single or  

multiple radii. 

 

Fig. 2. Regression coefficients functions c1, c2, c3, c4, c5, c6, c7 for hole depth z/R0=0,05. 
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The regression coefficients  
65421 ,,,, ccccc  of the reduced model can be 

obtained analogously by searching for coefficients of the full model. By using the 

least squares method in Eqs. (15), which minimizes the residual errors between the 

analytical and numerical methods in the comparative points i of the numerical model 

from Fig. 1. This task can be transformed by the minimization of three independent 

functionals F1, F2 and F3, yielding the seven linear equation system in the form of 

Eqs. (16). The conditions for the minimization of the functionals F1, F2 and F3 can 

be separated into the three independent linear equation systems as stated in 

Eqs. (17a,b,c). The approximated regression coefficients 
65421 ,,,, ccccc  by 

polynomial regression functions, as calculated from the individual radius data, are 

presented in Fig. 3. 
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Fig. 3. Regression coefficients functions 
65421 ,,,, ccccc
 
for hole depth z/R0=0,05. 



 

 

3. Conclusions 

The coefficient values c1, c2, c3, c4, c5, c6, c7  obtained from various radii data 

combinations move in a restricted range and do not change significantly. The 

reduced coefficients 
65421 ,,,, ccccc  are sufficient for the formulation of the stress 

tensor and for the formulation of this method. The results for a single radius can be 

also alternatively obtained by solving system of the further simplified equations, see 

Eqs. (18a,b,c). 
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