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Abstract. The flexural behavior of FRP reinforced concrete beam has been the topic of intensive 

previous research, because of the spread of use of modern FRP composite materials in the building 

industry as concrete reinforcement. The behavior of FRP reinforced member is different from the 

one reinforced with regular steel reinforcement, mainly because of vast difference between moduli 

of elasticity of FRP composite reinforcement bars and steel. This difference results in the fact that 

conventional design methods used for years in the field of reinforced concrete structures using steel 

reinforcement give poor results if attempted use with FRP reinforced structural members. Results of 

conventional methods are so poor that use of such methods would be dangerous – they tend to 

overestimate load carrying capacity and underestimate deformations – both resulting in unsafe 

predictions. This paper points to formulating easy to use and comprehensible method of predicting 

moment capacity of FRP reinforced concrete beams subjected to bending loading and validation of 

the proposed method via set of experiments. 

Introduction 

Since the proliferation of FRP composite materials as concrete reinforcement is mostly restricted 

by their still high price, there are also several technical aspects restricting their wider use. Besides 

their fragility, unclear long-term durability, partial flammability in case of carbon fiber RP, by 

nature orthotropic mechanical behavior and physical properties (namely by order of magnitude 

different coefficient of thermal expansion respective to the fiber orientation), one of the factors is 

also their difficulty to describe behavior of FRP reinforced structural members in calculation. Our 

work focuses on formulation of easy to use and comprehensible method of evaluation and 

prediction of the moment capacity of FRP reinforced concrete beams. 

In available literature, the formulae recommended for load bearing capacity prediction and 

design are based on empirical approach, mostly resulting from statistically processed experimental 

data [1,2]. Our work, on the contrary, derives theoretical model of behavior of FRP reinforced 

concrete section under flexural load and uses this model to formulate very easy to use design 

formula. 

Moment-curvature relation 

In the case of continuous centerline of beam, including continuity of derivatives (smooth curve 

without breaking points), the internal forces can be put into relation with the geometry of the 

centerline curve using relations of theory of elasticity of continuous beams. 

For the simplest case of bending (assuming only linear elastic state of the material), the formula 

governing the relation between acting bending moment M and curvature of the centerline can be 

written in the form of differential equation of bending 

M = EIκ = EIw”,                                                                                                                            (1) 



 
where M is the acting bending moment, I is the moment of inertia of the cross section relative to 

the axis of acting moment, κ is the curvature and w” denotes the second derivative of transversal 

coordinate, perpendicular to the acting moment direction. 

The curvature κ can be defined as reciprocal value to the radius of curvature ρ of the beam center 

line, i.e. κ = 1/ρ. The relation of curvature and the centerline w(x) is defined by the formula 

κ = w”/(1+w’
2
)
3/2

.                                                                                                                          (2) 

 

In engineering applications, where we assume the slope of the centerline to be small, we can 

approximate w’ ≈ 0 and as result the curvature from the previous equation will be equal to the 

second derivative alone, i.e. κ = w”. The moment-curvature relation can be used to describe elasto-

plastic behavior of the cross section, in terms of defining the point of elastic limit and plastic limit 

of moment capacity in case of ductile material being used as reinforcement. 

Reduction of tensile capacity of the FRP reinforcement due to member curvature 

In the case of FRP reinforcement one particular problem appears. It is not present in ductile 

material (as steel) and is specific problem of brittle FRP material. The bar failure is driven by fiber 

rupture, in which case the load carried by single fiber has to be distributed among other fibers 

throughout the reinforcement cross section. In case this increment causes rupture of other fiber, 

chain reaction of fiber rupture will occur and the bar will fail in brittle manner. As a result, a bar 

subjected to tensile loading as in reinforced concrete tensile zone, may fail even before reaching its 

ultimate stress in axial tension simply by introducing slight 

bending of the bar, resulting in additional tensile stressing of 

outlaying fibers of the FRP bar. We have to reduce the load 

carrying capacity of the FRP with increasing curvature of the 

FRP reinforced member. As was mentioned before, this 

reduction of load carrying capacity is strictly specific to FRP 

and similar materials, ductile materials are able to redistribute 

the load throughout reinforcement cross section utilizing the 

yielding and plastic capacity of the material. 

The curvature κel, based on the basic assumptions of theory 

of elasticity as sectional planarity, can be calculated, assuming 

the beam is subjected to pure bending, simply using the strain in 

compressive (εc) fiber and reinforcement (εr) of the cross section 

of effective height d, see Fig. 1: 

 

κel =(εc + εr)/d.                                                                                                                               (3) 

 

The reinforcement centerline obviously needs to copy the centerline of the entire member, as it is 

embedded in it. The curvature κ of the structural member thus induces additional bending moment 

Mr in the FRP reinforcement bar with magnitude of Mr = ErIrκ, where Er is the modulus of elasticity 

of the FRP reinforcement and Ir is the moment of inertia of the reinforcement bar with diameter Ø. 

The additional stress in reinforcement σr.add induced by the constrained rebar curvature is  

σr.add = Mr /Wr = Mr / (2Ir /Ø).                                                                                                    (4) 

 

By substituting the additional bending moment in rebar into Eq. 4 and simplifying, we get the 

relation for additional stress in the rebar σr.add as function of structural member curvature κ: 

σr.add = ErØκ/2.                                                                                                                              (5) 
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Fig. 1: Curvature of elastic section 



 
 

 Thus, the total stress in the most stressed fiber of the FRP reinforcement bar can take the form 

of failure criteria for reinforcement: 

σr.tot = σr + σr.add = σr + ErØκ/2 ≤ fr,                                                                                             (6) 

 

where σr is the stress in reinforcement calculated by conventional means of section evaluation 

and fr is the reinforcement tensile strength. 

It should be noted, that for small curvatures the reduction is virtually insignificant, in the order of 

less than 1% of load bearing capacity, but with increase of reinforcement ratio and deflection (and 

thus curvature) at peak loading the reduction can bring down the load bearing capacity of the 

reinforced section by significant 15% or more. 

Moment-rotation relation 

The previous paragraph, describing moment-curvature relation, assumed that the centerline of 

the flexed beam is continuous including the derivatives, i.e. the centerline curve is smooth. The 

concept of plastic hinge however implies the formation of discontinuity in the centerline derivative, 

forming a breaking point in the centerline curve. As long as the curvature at such point is infinite 

(radius of curvature is equal to zero), the moment-curvature concept is not of use in this case. The 

rigid body rotation model, providing relation between bending moment and the rotation angle of the 

two rigid parts is used instead. It is to be noted that the product of moment and rotation angle of the 

two rigid parts can be interpreted as energy dissipated in the plastic hinge. 

The rigid-body rotation model is especially suited for applications, where the strain is 

concentrated into limited area, typical for plastic hinges. In the theory of reinforced concrete beams 

such plastic hinge is formed by reinforcement yielding. The assumption is that the reinforcement 

yields in ideal elasto-plastic manner, i.e. no hardening of the reinforcement is taken into account. 

By such assumptions, the rotation capacity of plastic hinge 

in steel reinforced concrete beam is limited by the ultimate 

compressive strain of concrete εcu. As the strain in the 

plasticized reinforcement increases, so does the strain in 

compressive area, ultimately leading to concrete crushing 

failure of the compressive zone. 

Formulating the constitutive relation of flexural 

behavior of reinforced section has one more advantage, as 

commercially available software usually includes user-

definable plastic hinge model, and thus such relation can 

be adopted for use in various environments without 

requiring separate single purpose software. 

It is possible to formulate moment-rotation relation 

utilizing the reinforcement slippage model, as described in 

[3, 4]. Let us assume crack developed in reinforced beam 

and reinforcement slipping due to axial force, so that the 

point on the reinforcement and point in the concrete 

matrix, which were coincident before the loading are now 

slipped apart by distance s(F). The rotation angle φ between the two crack faces can now be written 

as (see Fig. 2):  

φ ≈ tan φ = s(F) / (d – x) ,                                                                                                              (7) 
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Fig. 2: Rigid body rotation angle definition 



 
This assumption should be valid for any crack surface, with exception of the crack localized at 

peak bending moment, as reinforcement slippage in such case occurs on both crack surfaces. The 

total rotation angle 2φ should be considered on such cracks. In cracks in the area of continuously 

increasing bending moment, only one crack surface (the one facing the moment maximum) is 

subjected to reinforcement slippage. 

Moment-curvature and moment-rotation compatibility problem 

The moment-curvature relation is based on theory of elasticity and assumes elastic behavior of 

beam under flexion and moment-rotation describes the behavior of inelastic hinge formed upon 

reaching of given limit load. The compatibility issue occurs in case we need to superpose the two 

states, i.e. to model crack opening in already deflected beam. It is not possible to simply combine 

the two models, simply because of the dimension of the variables – the rotation is denominated in 

angular units, i.e. is dimensionless and curvature is defined as reciprocal of radius of osculating 

circle or second derivative of centerline 

deflection curve, with dimension of 

reciprocal length. 

The curvature can be calculated 

utilizing sectional dimensions and strain 

in compressive and tensile fiber, as seen 

in Eq. 3. The rotation after section 

cracking can be calculated using the 

reinforcement slippage and neutral axis 

location as seen in Eq. 7. 

In order to be able to combine the 

two variables we will introduce the 

quantity with dimension of reciprocal 

length, replacing the rotation. As this 

quantity has the same dimension as 

curvature, we will call this quantity 

pseudo-curvature and denote κps. Let us replace the smooth curved centerline with polygonal chain 

of lines of finite length sm (crack distance) and angle at each apex φ. We can now define a circle of 

radius r, coincident with every single apex of the polygonal chain, see Fig. 3. The reciprocal of 

radius r is the pseudo-curvature κps of the polygonal chain and it value is κps = φ/sm.  

The pseudo-curvature κps resulting from previous assumption of rigid body rotation can now be 

combined with curvature κel, obtained from elastic calculation and their sum κtot can be used as the 

curvature in the reinforcement failure criteria, Eq. 6. 

Calculation of the moment capacity 

As has been stated before, the notorious design formula of evaluating the moment capacity of the 

reinforced concrete beam, presented in Eurocode 2 is unsafe to use with FRP reinforcement. The 

proposed reduction coefficient obviously has to be related to the reinforcement ratio, as for slightly 

reinforced sections the reduction in moment capacity induced by member curvature is negligible 

and for sections with high reinforcement ration, even at the threshold of concrete crushing failure, 

the reduction may reach levels higher than 15%. Such high reduction is caused by very high 

curvatures the FRP reinforced members display at failure point, as the Young’s modulus of FRP 

reinforcement is by order of magnitude lower than the one of steel, resulting in much lower stiffness 

of the structural member (the fact which in engineering practice leads to Serviceability Limit State 

based design of FRP reinforced members).  
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Fig. 3: Polygonal chain of rigid bodies, pseudo-curvature definition 



 
The proposed formula for reduction coefficient Cred was based upon investigation made on 

theoretical models and verified using series of experiments, using cross sections with various 

reinforcement ratios ρ, ranging from 0,1% up to 1,5%, where the failure is driven by concrete 

crushing. Reinforcement ratio ρ is calculated as the ratio of sectional area of reinforcement Ar 

relative to effective sectional area bd, where b is the width of compressive zone and d is the 

distance of reinforcement form the compressive fiber of the section. As the reduction was found to 

be strongly non-linear, a function with more than one parameter was required to approximate it. 

Logarithmic expression with two parameters was found to fit the results well. The formula was 

proposed in the following form: 

Cred = a(ln ρ + b),                                                                                                                           (8) 

 

where a and b are arbitrary constants and for the time have been found to be a = 0,075 and b = 2 

and the value of Cred represents the relative amount of moment capacity that is lost due to member 

curvature. For reinforcement ratios ρ lower than 0,15%, the reduction should be considered zero. It 

should be a topic of further research whether the reduction formula would give better results, if 

formulated in form of other function, for example in the form of bi-parametric square root function. 

The resulting evaluation algorithm based on Eurocode 2 take the form of: 

x = (Arfr)/(0,8bαfc)                                                                                                                         (9) 

MR = (1 – Cred)Arfr(d – 0,4x),                                                                                                       (10) 

 

where MR is the moment capacity, x is the neutral axis coordinate relative to compressive fiber of 

the cross section, Ar is sectional reinforcement area, fr is tensile strength of reinforcement, b is width 

of the compressive area, α is coefficient (usually 0,85 or 1,0) and fc is concrete compressive 

strength.  

Experimental results and conclusion 

The theoretical models, described in previous paragraphs, were compared to experimental results 

on medium scale test specimens. The experimental program was conducted in the laboratories of 

the Experimental Centre of the Faculty of Civil Engineering of the Czech Technical University in 

Prague during the spring of 2011, as part of bachelor thesis of Filip Vogel [5, 6]. Experimental 

setup was slightly unorthodox due to the fact that the primary purpose of the experiment was to 

investigate the moment redistribution ability of the FRP reinforced beams and the moment capacity 

measurement (for this paper) was just a by-product of the investigation. The experiments were 

conducted on FRP reinforced concrete continuous beams with identical outer dimensions 

(180×130mm cross 

section, 4.0 m length) 

differed in their 

reinforcement ratio. 

The reinforcement in 

all cases was 

symmetrical for upper 

and lower surface of 

the beam, as positive 

and negative bending 

moments were anticipated on the continuous beam. The main three specimens used GFRP 

reinforcement of different diameters: 2Ø6, 2Ø8 and 2Ø10 respectively as upper and lower 

reinforcement.  
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Fig. 4: Experiment layout 



 
The length of the test specimens (4.0 m) was limited by the dimensions of the laboratory 

equipment and the layout of the test had to be chosen in order to make best use possible of the 4.0 m 

long specimen. The requirement was for the test to represent at least once statically indeterminate 

structure, in order to be able to measure hypothetical moment redistribution upon reaching desired 

plastic hinge. Acting force F and all support reactions A, B, C were measured, together with 

deflections. The experiment layout is in Fig. 4. 

Results of the measured ultimate moment capacities and their comparison to predicted values are 

presented in Table 1.  

Table 1: Comparison of results 

Reinforcement 2Ø4 2Ø6 2Ø8 2Ø10 2Ø12 2Ø14 

ρ [%] 0,12 0,28 0,50 0,78 1,13 1,55 

MR (EC2) [kNm] 2,55 5,63 9,76 14,77 20,45 26,56 

Cred [%] 0,0 5,4 9,7 13,1 15,9 18,3 

MR (red.) [kNm] 2,55 5,33 8,81 12,83 17,20 21,71 

M measured N/A 5,35 9,23 12,27 N/A N/A 

 

As can be seen from the table, the reduced moment capacity results in the line MR (red.) provide 

much safer prediction than conventional design formula in line MR (EC2), compared to the actual 

measured moment capacity M measured. Still, the proposed moment capacity reduction formula 

(Eq. 8) is quite simple and comprehensible. 
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