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Abstract. This article deals with the influence of imperfection on the resulting stiffness of the 

cylindrical shell. In the first step, it is pointed out that, the imperfection that is oriented 

towards middle of the shell has negative effect, because it reduces the magnitude of the 

critical force. The second part of the article deals with the influence of the length to 

imperfection and how this geometric dimension fundamentally affects the magnitude of 

critical force. The last part examines the imperfection in relation to the three defined force 

positions.  

Introduction 

Positive properties of shell elements are connected with their high strength with respect to 

their stiffness at minimum weight design. For this reasons they are used in designs, where 

steel structures have to have such basics properties, for example in planes, cranes, gas 

pipelines, etc.   Design of thin-walled structures can be divided into two basic theories. Initial 

theory is considered to be linear theory, which considers the perfect design without 

imperfection. This approach can be used only for simple tasks. Nowadays, problem of 

nonlinear theory is developing for complicated technical tasks, where designers have to 

consider the imperfection. 

However, this type of structure is considerably sensitive to different geometric variations, 

which in technical terms are called geometric imperfections. These imperfections have a 

major negative impact. Of their existence reduces the level of critical force that causes a loss 

of stability - buckling, as the authors indicated in [1-4]. The article deals with symmetrically 

cylindrical shell loaded by axial compressive load one end of which is fixed. The geometric 

imperfections are taken to be control parameters of our investigation with relation to the 

critical force magnitude. The computations are based on numerical calculations connected 

with linear buckling analysis. 

Basic knowledge and problem presentation 

This paper is focused to the modelling of geometrical imperfections of axial loaded 

cylindrical shells. According to publication [5] there are five different methods that can be 

used for establishing relations between geometrical imperfections and knock down factors. 

The methods are: 
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- Linear buckling mode-shaped imperfection (LBMI), 

- Single perturbation load imperfection (SPLI), 

- Geometrical dimple imperfection (GDI), 

- Axisymmetric imperfections (ASI), 

- Mid-surface imperfection (MSI). 

For our case, we will consider GDI method. The displacement field of the GDI is given as 

radial displacement and it is defined as a dimple cosine with wavelengths along the 

circumference (a) and the meridian (b): 

∆𝑟(𝜑, ζ) =
𝑤0

4
[1 − cos (

2𝜋𝑟

𝑎
𝜑)] [1 − cos (

2𝜋

𝑏
ζ)],          (1) 

where: 

- w0 → imperfection amplitude [m], 
- a → wavelength along the circumference [m], 
- b → wavelength along the meridian [m], 
- r → radius [m]. 

For numerical approach we can consider linear bifurcation analysis. Linear bifurcation 

analysis is carried out to obtain the elastic critical buckling resistance of the perfect structure. 

In numerical software, the elastic critical buckling resistance is obtained through the 

eigenvalue problem given in (2), where the load for which the stiffness matrix becomes 

singular is sought: 

(λ𝑖𝐊)𝑣̅𝑖 = 0,                (2) 

where: 

- λi → eigenvalue (elastic critical buckling resistance), 

- K→ tangent stiffness matrix, 

- 𝑣̅𝑖→ buckling mode shapes (eigenvectors) [6]. 

Let's introduce a structural element for which the analysis was accomplished. The constant 

dimensions are: 

- L (shell length) →  L = 1 m, 

- D (shell diameter) → D = 0.2 m. 

For a better understanding of behaviour of the shell imperfections, the following variable 

parameters are chosen: 

- tmin (minimal wall thickness) → tmin = 0.5 mm, 

- tmax (maximal wall thickness) → tmax = 10 mm, 

- it (increase increment for wall thickness) → it = 0.5 mm, 

- emin (minimal imperfection diameter) → emin = 0 mm, 

- emax (maximal imperfection diameter) → emax = 10 mm, 

- ie (increase increment for imperfection diameter) → ie = 0.5 mm, 

It is supposed that the structure is made of material with Young modulus E = 2.1e5 MPa and 

Poisson ratio μ = 0.3.  

In order to have the most accurate data, the parametric model was created in MATLAB. To 

simplify work, the MATLAB script was created such a way that it directly generates data files 

for ABAQUS software which subsequently carried out numerical simulations. This resulted to 

more than 700 values that were evaluated.  

Simulation of geometric imperfection for axisymmetric cylindrical shell 

In this section the shell behaviour with relation to different magnitudes of geometric 

imperfections is described. The boundary conditions for FEM analyses are as follows. The 

shell is considered as a cantilever beam with one end fixed (removed all displacements and 

rotations) and the second one loaded by compression force of magnitude 1 N, fig. 1.   
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Fig.  1 Defined boundary condition for FEM analyses 

At the beginning, we will change the shell diameter, so that it will rise to positive values 

and we will compare results with the state, when the shell diameter in location of imperfection 

decreases fig. 2. If the diameter of the shell at the location of imperfection decreases, 

decreases also critical force. From the numerical computations we see that the diameter 

decreasing leads to significant decreasing of the critical force Fcr, as shown in fig. 3a           

and fig 3b. For the case, when the diameter of shell at the location of imperfection increases, 

we can meet with obvious phenomenon that the magnitudes of critical force are growing  

 

 
Fig. 2 Created imperfection    

For further studies, we will only deal with cases, where the diameter at the location of 

imperfection decreases, because this leads to smaller critical forces.  

 

   

Fig. 3a Field values depending on the size of shell diameter and critical force 
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Fig. 3b Field values depending on the size of shell diameter and critical force 

In the next step, we describe, how to length of imperfection affects the critical force       

Fcr. There were three models prepared with defined imperfection length: 

- el1 = 500 cm, 

- el2 = 400 cm, 

- el3 = 300 cm. 

These imperfections were placement in geometrical centre of shell length. Since we can 

assume shell behaviour, therefore, it is not necessary to count with 400 values as previous 

calculations. The changes are relates to increase increment for wall thickness. The previous 

value is it = 0.5 mm and current is it = 1 mm. And last change in this case, is reduce the 

diameter range of imperfection ed = 0.25; 0.5; 0.75; 1; 1.25; 1.5 mm. These dimensions were 

chosen because, if they were produced during technological manufacturing of the structural 

element and if in manufacturing process is absence of quality checking, such these damaged 

elements could be shipped to the seller.  In the fig. 4a, 4b and 4c, shows the individual fields 

of dependence on the length of the imperfection el. 

In the last step, we will examine shell behaviour, if we change the position of imperfection.  

Firstly was again changed variable parameter, due to faster numerical calculation. The change 

occurs diameter range imperfection actual values are ed = 0.25; 0.5; 0.75; 1 mm and 

imperfection length is constant el = 250 cm. 

 
Fig. 4a Field of critical force in dependence on the length of imperfection el1 = 500 cm 
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Fig. 4b Field of critical force in dependence on the length of imperfection el1 = 400 cm 

 

 
Fig. 4c Field of critical force in dependence on the length of imperfection el1 = 300 cm 

First position was placed on the symmetrical centre of the shell length. Second 

imperfection position is at a distance from the free end - 25 cm and the last position is at a 

distance from the fixed end - 25 cm. In the fig. 5a, 5b and 5c shows the individual fields of 

dependence on the positon of the imperfection. 

 

 
Fig.  5a Field of critical force in dependence on the position of imperfection - position in centre 
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Fig.  5b Field of critical force in dependence on the position of imperfection - upper position 

 
Fig.  5c Field of critical force in dependence on the position of imperfection - bottom position 

Results 

This chapter deals with evaluation of the results obtained from simulations, which were 

described in previous chapter. For first case, we can evaluate the imperfections that cause the 

tapering of the shell casing has a negative impact for critical force Fcr. But, an imperfection 

which causes the shell casing extension have positive effect on critical force Fcr, for a better 

understanding see fig. 6.   
We can conclude that the positive contribution of imperfection is manifested for wall 

thicknesses greater than 3 mm.   

For second case fig. 7, we can observe, that the imperfection length significantly negative 

affects value of critical force for smaller wall thicknesses. For wall thicknesses greater than 7 

mm, the imperfection length of imperfection does not have such a major impact for critical 

force. 

For last case fig. 8, we can observe, when the imperfection is located in the part of shell, 

where is defined fixture, again for smaller wall thicknesses cause a decrease value of critical 

force. 
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Fig.  6 The course of critical force at defined maximum eccentricity emax = 95 mm, blue line – reference values without 

imperfection, red line  – line with values + emax , yellow line – line with values - emax 

 
Fig.  7 The course of critical force influenced by the imperfection length, emax = 1.5 mm, blue line → el1 = 500 cm , red 

line → el2 = 400 cm, yellow line → el3 = 300 cm 

 
Fig.  8 The course of critical force influenced by the imperfection position, emax = 1.5 mm, blue line → ep1 = 0 cm ,  

red line → ep2 = + 25 cm, yellow line → ep3 = - 25 cm 
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Conclusions 

The article deals with the influence of geometrical imperfections for case of Axially 

Compressed Cylindrical Shells. In general, the issue of imperfection is considered to be an 

undesirable phenomenon, which was also confirmed by numerical calculations, when the 

value of critical force was reduces by the influence of geometric imperfections. 
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