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Abstract. In this paper an alternative J2 material model with isotropic hardening for finite-

strain elastoplasticity is presented. The model is based on a new non-linear continuum 

mechanical theory of finite deformations of elastoplastic media which allows us to describe 

the plastic flow in terms of various instances of the yield surface and corresponding stress 

measures in the body initial and current configurations. The approach also allows us to 

develop thermodynamically consistent material models in every respect. Consequently, the 

models not only do comply with the principles of material modelling, but also use constitutive 

equations, evolution equations and even ‘normality rules’ during return mapping which can be 

expressed in terms of power conjugate stress and strain measures or their objective rates. 

Therefore, such models and the results of the analyses employing them no longer depend on 

the description used in the model and the particularities of the material model formulation. 

Here we briefly present an improved version of our former material model capable of 

imitating ductile-to brittle failure mode transition at high strain rates in a ductile material and 

demonstrate the model in a numerical example. 

Introduction 

Modelling of materials within the framework of finite-strain elastoplasticity represents a 

challenging task in computational mechanics. While plastic behaviour of structural materials 

within the framework of small-strain elastoplasticity is now well understood, due to the fact, 

that small-strain flow plasticity theories work well and their results are in agreement with 

experiments, the same cannot be said about finite-strain flow plasticity theories [1]. Although 

innumerable material models for finite-strain elastoplasticity have by now been proposed [2-

10], the models in general lack universality, as their analysis results depend on the description 

used in the model and the particularities of the model formulation. The modelling method 

might simply need some developments in the non-linear continuum theory of finite 

deformations of elastoplastic media in order that the corresponding material models could be 

considered to be complete and thermodynamically consistent. 

There are two modelling methods or techniques in contemporary phenomenological 

plasticity to model irreversible finite deformations in the material of a deformable body. The 

first is an ad hoc extension of infinitesimal flow plasticity theories into the area of finite 

deformations of elastic media to cover large displacements, but small strains of the deforming 

body. The related material models use an additive decomposition of a strain rate tensor into an 

elastic part and a plastic part and are based on a hypoelastic stress-strain relationship while 

utilizing the theory of nonlinear continuum mechanics of elastic media [2, 11-16].  
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The second method is now generally accepted as a modelling method of finite irreversible 

deformations in the material. It is based on the theory of single-crystal plasticity which 

utilizes the micromechanics of irreversible deformations of a single-crystal to describe large 

plastic deformations in the material. The corresponding formulations introduce the notion of 

an intermediate stress-free configuration and use a multiplicative split of a deformation 

gradient into an elastic part and a plastic part, the theory of nonlinear continuum mechanics of 

elastic media and classical flow plasticity theories [2, 3, 17-23]. 

Though it may sound surprising, our ongoing research has shown, that both of the 

aforementioned methods are just variants of our nonlinear continuum theory of elastoplastic 

media using an additive decomposition of the displacement field into an elastic part and a 

plastic part which describes the plastic flow in terms of various instances of a yield surface 

and stress measures either in the body initial or current configuration. The theory also enables 

to develop thermodynamically consistent material models in every respect.  

The first method using the additive split of the strain rate tensor is moreover constrained 

when the plastic flow is defined in terms of a Cauchy/Kirchhoff stress tensor based reference 

yield surface in the body current configuration. As a result, the corresponding plastic part of 

the spatial strain rate tensor does not have a finite-strain form. That is why contemporary 

material models based on the additive split of the strain rate tensor look, as if they had a 

mixed small-strain-finite-strain formulation.  

The second method, employing the multiplicative split of the deformation gradient alone 

also opens a few questions when one considers the definition of the deformation gradient used 

with it. Since it neglects the elastic/plastic displacement field in the definition of the 

elastic/plastic part of the deformation gradient representing the factors of the multiplicative 

split, the formulation of the deformation gradient in this way seems to be rather incomplete 

and not quite consistent with the theory of nonlinear continuum mechanics. Moreover, it can 

be shown, that the theory using the multiplicative split would result in the same final formula 

for the deformation gradient as our theory if the displacement fields were properly considered 

in the multiplicative split. 

We will not present the non-linear continuum theory of elastoplastic media herein, nor will 

we explore any of its part. Our aim in this paper is to present an alternative J2 material model 

with isotropic hardening, which as a result of the aforementioned nonlinear continuum theory, 

allows us to develop thermodynamically consistent alternative material models.  

The Kinematics of Deformation 

In order to describe the kinematics of deformation of an elastoplastic media, we assume 

that the material/Lagrangian displacement field can additively be decomposed into an elastic 

part and a plastic part el pl u u u . In this case neither the Green strain tensor 

 1/ 2 T   E F F I  nor the Almansi strain tensor  11/ 2 T    e I F F   has a 

decomposition into an elastic part and a plastic part, but an additive decomposition exists 

when one evaluates the objective time derivatives of the tensors. The material E  and the 

spatial  ed eL  strain-rate tensors then take the following forms 

  
1

,
2

T T el pl      E F F F F E E   (1) 

where 

 
1

,
2

T
el el

el T
   

      
    

u u
E F F

X X
  (2) 
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 ,
2

T
P P

pl T      
      

    

E F F
P P

  (3) 

 ,      and     ,

T
pl P P P


       

    
    

u

X P P P
  (4) 

 1 1 1,     ,      .T el pl el T el pl T pl               d F E F d d d F E F d F E F   (5) 

 

Here X  denotes the position vector of a material point and  x X u  is the position vector of 

the corresponding spatial point after deformation. The deformation gradient /   F I u X  

/ /el pl    I u X u X  then can either be expressed as a function of the material 

displacement field u  alone or as a function of its elastic el
u  and plastic pl

u parts. The 

symbols , / ,el pl el pl
E E d d  denote the elastic and plastic material/spatial strain rate tensors, in 

which the plastic flow is defined by Eqn. (4)1 as a product of a plastic multiplier   and an 

appropriate yield surface normal /P  P  defined in terms of the 1
st
 Piola-Kirchhoff stress 

tensor P . Here the operator      1/T T

e t          
 

F F F FL is the Lie derivative operator 

of a spatial strain tensor. Please note, that both the elastic and plastic parts of the strain rate 

tensor have similar forms as the strain rate tensor. Furthermore, it can be shown, that the 

plastic flow defined by Eqn. (4)1 is not constrained, resulting in Eqns. (3) and (5)3 

respectively, as the only non-degenerated forms of the material and spatial plastic strain rate 

tensors. 

The Constitutive Equation of the Material 

Proper formulation of a material model for finite-strain elastoplasticity enables to define 

the constitutive equation of the material in terms of various stress and strain measures or their 

objective rates in both the body initial and current configurations. As a result, the constitutive 

equation of a material cannot be unique, but it must have various forms. These forms however 

have to comply with the principles of material modelling, particularly meet the requirements 

of material objectivity and moreover be thermodynamically consistent in order that they 

would defined the same material. Furthermore, because the additive decomposition defined by 

Eqns. (1), (5)1 exists in rate forms only, the constitutive equation of the material too has to 

have a rate form. In fact, Eqns. (6)-(9) define a true hypoelastic based elastoplastic material 

model, which does not have a form in terms of a finite strain measure. 

In this research we have modified our former material model capable of imitating ductile-

to-brittle failure mode transition of a ductile material at high strain rates [24]. In agreement 

with the above, the rate form of the constitutive equation of the material can take any of the 

following forms: 

 

    : : 1 ,mat el pl mat vis plx x        S E E E EC C   (6) 

       : : 1 ,mat el pl mat vis pl

P x x           P F S F E E E EC CL   (7) 

          : : 1 ,T spat el pl spat vis pl

O e eJ x J x            
 

τ F S F d d d dC CL L L   (8) 

          1 : : 1 ,T spat el pl spat vis pl

T e eJ x x            
 

σ F S F d d d dC CL L L   (9) 

where 2 ,      2 ,mat el el mat vis vis visG G            1 1 1 1C I C I   (10) 
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           
,  ,  ,  ,

2 1 1 1 2 2 1 1 1 2

vis vis vis
el vis vis

vis vis vis

E E E E
G G

 
 

     

 
   

           
  (11) 

 1 ,spat el mat el

ijkl im jn ko lp mnopJ F F F F     C C   (12) 

 1 .spat vis mat vis

ijkl im jn ko lp mnopJ F F F F     C C   (13) 

 

In Eqns. (6)-(13) the symbols      , , , , , , ,P O TS P τ σ S P τ σL L L  denote the 2
nd

 Piola-

Kirchhoff stress tensor, the 1
st
 Piola-Kirchhoff stress tensor, the Kirchhoff stress tensor, the 

Cauchy stress tensor and their objective rates respectively, namely the time derivative of the 

2
nd

 Piola-Kirchhoff stress tensor S , the Lie derivative of the 1
st
 Piola-Kirchhoff stress tensor 

 P PL , defined in terms of the Lie derivative operator of a mixed spatial-material stress 

tensor     1 /P t       
 

F FL , the Oldroyd rate of the Kirchhoff stress  O τL  defined 

in terms of the Lie derivative operator of a spatial stress tensor 

    1 /T T

O t          
 

F F F FL   and the Truesdell rate of the Cauchy stress  defined in 

terms of the Truesdell derivative operator of a spatial stress tensor 

    1 1 /T T

T J J t             
 

F F F FL , which actually carries out Lie differentiation, 

but with rearranged terms. Here the fourth order material elasticity tensor 
mat elC  and the 

fourth order material viscosity tensor 
mat visC  have similar forms as the fourth order elasticity 

tensor of the St.-Venant Kirchoff material [25] using two independent material parameters 

,E   and ,vis visE   respectively.  The fourth order spatial elasticity and viscosity tensors 

,spat el spat visC C  the can be determined in accordance with Eqns. (12) and (13), where 

 detJ  F  is the Jacobian of the deformation. The variable x  denotes the ratio of ductile and 

total damage increment [24]. Please also note, that the objective rates    , , ,P OS P τL L

 T σL  transform in the same way from one of their forms into another as do the stress 

tensors , , , ,S P τ σ  which ensure thermodynamic consistency of the formulation. 

Modelling of the Plastic Flow  

Similarly as in the case of the rate forms of the constitutive equation of the material, proper 

formulation of a finite-strain flow plasticity theory enables to describe the plastic flow in 

terms of various instances of a yield surface and corresponding stress measures in either the 

body initial or current configuration. Let the various instances of the yield surface

 ,S S   S q ,  ,P P   P q ,  ,    τ q ,  ,    σ q  be defined in terms of the 

stress measures , , ,S P τ σ  and a vector of internal variables q . After introducing similar 

kinematic equations as the ones defined by Eqns. (1)-(5), they serve a basis for the first 

nonlinear continuum mechanical theory of finite deformations of elastoplastic media. 

Moreover, since they define the same admissible stress space and the same plastic flow 

respectively, the instances of the yield surface cannot be independent of each other. In fact 

, , ,S P        are related by the following formulas 

 1 1,    ,    .
P P P S

T
 

            
     

     
F F F

P σ P τ P S
  (14) 
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Furthermore, one of the yield surfaces , , ,S P       has to be chosen as a reference yield 

surface to define the material model. It can be shown, that when
   or 

  is chosen as a 

reference yield surface in the current configuration of the body, we recover the contemporary 

flow plasticity theories. 

Crucial part in finite-strain material modelling is thermodynamic consistency of the 

material model formulation. It ensures, that the material model is independent of the 

description and the particularities of the model formulation. The thermodynamic consistency 

of the plastic flow then can be expressed as follows 

      0 0 0: : : : ,
pl

pl pl pl

P O TdV dV dV dv


      


u
E S P d τ d σ

X
L L L   (15) 

where  0dV  is an infinitesimal volume element in the body initial configuration and 

0dv J dV   is its spatial counterpart. In terms of the above one can prove, that Eqn. (15) has 

an equivalent form defined as 

      : : : : ,
S P

P O TJ
        

   
   

S P τ σ
S P τ σ

L L L   (16) 

 

which is known as the ‘normality rule’ and which defines a rate form of a thermodynamically 

consistent return mapping procedure. The result is of fundamental importance in 

computational mechanics as it states, how the plastic multiplier ought to be calculated during 

return mapping when finite-strain elastoplastic analysis is carried out.    

The Reference Yield Surface 

As it has been mentioned in the above, the choice of the reference yield surface determines 

the material model. As a result, alternative material models can be developed. In our research 

we have generalized the J2 flow plasticity theory with isotropic hardening, where we used the

 ,P P   P q , Eqn. (17) yield surface as the reference yield surface to define our material 

model. Please also note, that we have changed the definition of the  2 :PJ P P P  invariant, 

which no longer bases on the deviatoric part of the 1
st
 Piola-Kirchhoff stress tensor P . This is 

because of the fact, that the 1
st
 Piola-Kirchhoff stress tensor transforms under the change of 

the observer as R

  P Q P  and the  2

PJ P  is the only invariant, which is not affected by the 

change, i.e.    2 2

P PJ J P P , where RQ  is an arbitrary rotating tensor expressing the 

relative rotation of the coordinate systems of the observer with respect to the reference 

coordinate system. As a result, the yield surface is no longer a cylinder, but a sphere. 

 

 0,P P P

eq y       (17) 

      2 11: ,        1 ,
plP P P P b e

eq eq y UT yJ F Q e             
 

P P P P   (18) 

 
0

: ,   ,  ,  .

t pl pl P
pl pl pl pl pl pl pl pl ple e e e dt 

   
         

  
u u

F F F F I F
X X P

  (19) 

 

The actual yield stress P

y , which is a 1
st
 Piola-Kirchhoff stress measure, determines the 

radius of the yield surface and is defined by Eqn. (18)2. It is the only nonzero component of a 

stress tensor 
UTP  (i.e.  

11

P

y UT  P ) coming from an uniaxial tensile test of the modelled 
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material, where the operator  
11

    extracts the element in the first row and the first column 

of a 2
nd

 order tensor    written as a 3x3 square matrix. The corresponding deformation 

gradient and the Jacobian of deformation are denoted as ,UT UTJF , where  11 11UT UTF  F  and 

  11detUT UT UTJ F F . Please also note, that the only nonzero element of the corresponding 

2
nd

 Piola-Kirchhoff stress tensor 
UTS  determined from the tensile test of the material is 

   
11

1
plb e

y UTQ e      S . The equation is known as the NOIH rule of isotropic hardening 

[26], where UT UT UT P F S . The NOIH rule uses three material parameters, the constant yield 

limit of the material y and ,b Q , which control the isotropic hardening. The parameters 

,y Q  are also 2
nd

 Piola-Kirchhoff stress measures, while ple  is an accumulated plastic strain 

Eqn. (19)2. One may note here, that we have changed the definition of the accumulated plastic 

strain rate ple  Eqn. (19)1, where pl
F  is the deformation gradient of pure plastic deformations 

in the material whose time derivative is assumed to be in the form of Eqn. (4)1. Other changes 

in the definitions of the accumulated plastic strain rate ple  and the equivalent stress P

eq  

resulted from the need of meeting the requirements of thermodynamic consistency in booth a 

one-dimensional (1D) stress state and a three-dimensional (3D) stress state in the material. 

Plastic Multiplier Calculation 

The calculation of the plastic multiplier is a crucial step in finite-strain elastoplastic stress 

analysis as it determines the value of the stress rate tensor Eqn. (6)-(9), and the plastic part of 

the strain rate tensors ,pl pl
E d  during return mapping. The return mapping procedure 

moreover has to be thermodynamically consistent, i.e. it has to comply with Eqn. (16). The 

condition has not yet been met in any formulation so far. The thermodynamically consistent 

return mapping procedure for plastic multiplier calculation then utilizes the objective 

differentiation of the yield surface 
P  and it can be expressed as follows 

 

    P P 11
: 0,

P

UT

 
   

P P
P

L L   (20) 

 

where  P PL  is then replaced by the rate form of the constitutive equation of the material 

Eqn. (7) and the other term of Eqn. (20) by the form  P 1111

plb e pl

UT UTF Q b e e       PL  . 

Please also note, that the first term of Eqn. (20) can be replaced with any other term of Eqn. 

(16) because of the thermodynamic consistency of the formulation. 

The Ratio of Ductile and Total Damage Increment 

The idea of the ratio of ductile and total damage increment x  was first introduced by Écsi and 

Élesztős in order to take into account the internal damping of the material properly during 

plastic deformations, where x  allowed us to distribute the plastic flow proportionally between 

the spring and the damper of a 1D frictional device representing the rheological model of the 

material [24]. The ratio is determined in an elastic corrector phase during return mapping and 

its value is then kept constant. Since the return mapping procedure in our material model is 

carried out in the 1st Piola-Kirchhoff stress space, we had to modify the definition of the ratio 

as follows 
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 

   

: :
,

: : : :

mat el

mat el mat vis
x




  

N F E

N F E N F E

C

C C
  (21) 

where ,    ,
:

P 
  



P P
N N

P PP P
  (22) 

and 0
2

y y
y


    (23) 

 

denote the McCauly’s brackets, which return zero if 0y    and where we also used the 

property  P  P F SL . Please also note that all terms of Eqn. (21) are objective stress rates, 

so that the value of x  is not affected by the change of the observer.   

Numerical Experiment 

As a numerical experiment, plastic bending of a cantilever of dimensions 50mm x 50mm x 

600mm has been studied. One third of the upper surface of the beam was loaded applying

5.0 MPap  constant pressure on it as stepped load using a Heaviside step function using. 

The beam was initially at rest and the analysis was run as transient-dynamic using 40.5 10  s  

time step size and 0.048 s  calculation end time. Figure 3 depicts the spatially discretized 

beam, the boundary conditions and the applied pressure with arrows.  

 
Fig. 1. Spatially discretized model of the beam 

 

The cantilever material was a low carbon steel whose material properties are listed in Tab. 1. 

 

Table 1.   Material properties of the cantilever in the body initial configuration 

 [ ]E Pa  112.1 10  

 [ ]visE Pa s  72.1 10  

[ ]vis    0.3  

 [Pa]y  6350.0 10  

 [Pa]Q  6150.0 10  

 [-]b  3.0  
3

0  [kg/m ]  7800.0  
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In order to simplify the analysis, we assumed, that
UT F I  and 

11 1UTF  , since we did not 

have information about the deformation gradient 
UTF  and its Jacobian 

UTJ  coming from the 

tensile test of the material. 

Numerical Results 

Figures 2-5 show a few selected results of the finite element analysis, namely the Von-Mises 

stress distribution at the end of the analysis, the vertical displacement time history curve at 

nodes N25 and N88, the vertical velocity and the vertical acceleration time history curves at 

node N25 (see Fig. 1 for the location of the nodes). As can be seen in the figures, the loading 

of the body is highly dynamic with maximum deformations around 0.12 m, maximum 

velocity around 18.0 m.s
-1

 and maximum acceleration around 18500.0 m.s
-2

. 

 

 

 
 

Fig. 2. Von Mises stress distribution at the end of the analysis 

 

 
Fig. 3. Vertical deformation time history curves at nodes N25 and N88 
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Fig. 4. Vertical velocity time history curve at node N25 

 
Fig. 5. Vertical acceleration time history curve at node N25 

Conclusions 

In this paper some recent developments in the solution of structural finite element problems 

within the framework of finite-strain elastoplasticity was presented. An alternative J2 material 

model using an improved additive decomposition of the strain rate tensor into an elastic part 

and a plastic part, capable of modelling ductile-to-brittle failure mode transition of a ductile 

material at high strain rates, was developed. The model is a result of the first non-linear 

continuum theory of finite deformations of elastoplastic media which allows to describe the 

plastic flow in terms of various instances of the yield surface and corresponding stress 

measures in the body initial and current configurations. The model moreover is 

thermodynamically consistent. Therefore, it uses constitutive equations, evolution equations 

and even “normality rules” which can be expressed in terms of power conjugate stress and 

strain measures or their objective rates either in the body initial or current configuration. 

Consequently, the analysis results of such a model, are independent of the description used in 

the model and the particularities of the model formulation. 
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