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Introduction 

In the automotive and ground transportation industry simulations have been replacing 

prototype tests for quite some time. The ”digital twin“ is required to acredibly copy the 

physical properties of the actual prototype. For the non-linear dynamics analyses it is 

necessary to choose the realistic physical properties of elastic-plastic materials. The goal is to 

have the simulation achieve the best correlation compared with the results of the experimental 

tests.    

In this article we will show how optimizing the material parameters can significantly 

reduce the computational time while offering the same quality results. The aim of this article 

is to compare the results obtained when using two highly advanced material models, the 

hardening curves and the Krupkowski law [3]. The results of the simulations in both cases 

were compared to  the results of the experimental dynamic bending tests carried out on test 

samples with  a cross section size of 50x50 [mm], wall thickness of 5 [mm], where the 

material is steel class S355 and it is manufactured by hot rolling. 

 

1. Creation of material cards 

 

The first step of the „digitization“ of the material properties for the numerical simulation 

purposes is the acquisition and adjusting of the basic mechanical properties of the given 

material. Those we obtain by means of static tensile tests according to  the STN EN ISO 

6892-1 standards. At this stage it is necessary to create a model of the tensile specimen with a 

fine meshing into a finite elements and  to carry out the tensile test with the given simulation 

software. In this case, it is best to use the 4 nodes shell or 10 nodes tetrahedron elements, 

depending on whether the material is tuned for the volume or shell elements. In case of 

volume mesh  it is necessary to check the numerical material model thanks to which we 

intend to count elastoplastic behaviour of steel. Some elements  have the tendency to be too 

soft (supple – for example  hexahedrons), others can exhibit very high stiffness resulting in 

locking. At any case, the real and computed  tensile curve must show compliance in the whole 

elastic-plastic domain. If this is not the case, it is necessary to adjust the characteristic 

variables (parameters) of the material models  so that the difference is in the range of 

acceptable values. 

Next, it is necessary to proceed with the tuning  of the material properties to the size of the 

computation mesh. Although the speed at which computers perform  is constantly improving , 
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currently we are not able to calculate large models and large-scale tasks with a fine mesh size. 

To hammer out the results within a reasonable time, it is necessary to use a coarser mesh grid 

that is determined by the optimal characteristics of the meshing. In practice, for steel it means 

that instead of 5 mm mesh size for the dynamics tasks (with large deformations), a mesh with 

a size of 10 to 20 mm  is used. Of course it is necessary to adjust and tune the material cards 

for that computational mesh size. The basic parameters of the material cards for the 

computational mesh size are also the tensile test results. In this step we prepare another set of 

the tensile test samples but this time with the element size that corresponds to the 

computational mesh size. At this stage it is necessary to adjust the parameters of the material 

model in such a way so that  the tensile curves of both simulations (thus fine and real – 

computational mesh size) are in compliance. It should be emphasized that in all cases we have 

to compare the real, and not the engineering tensile curves. 

 

2. Elastic-plastic material models 

 

In the case of dynamic tasks most often two material models are used – the Krupkowski 

law and the strain-rate curves for the elastic-plastic description of the material behaviours. 

The Krupkowski material model characterizes the behaviour of the material in the elastic-

plastic domain which  also implies isotropic and kinematic behaviours of the flexible bodies. 

The material model is described by the following equation: 
 

𝜎 = 𝐾(𝜀0 +  𝜀)𝑛        (1) 

where:  
 

𝐾 – material constant  (hardening coefficient) 

𝑛 – strain hardening exponent, which has a value  of <0,1> 

      (0 – isotropic hardening, 1 – kinematic hardening) 

𝜀0 – initial strain on the limit of elasticity 

 

Constants 𝐾 and 𝑛 of the material model are obtained  through the approximation of the 

tensile diagram, while engineering stress and strain values  are  recalculated into real values 

and thus construct a curve. We do this because the Krupkowski equitation better approximates 

the actual curve of stress and strains than the measured engineering curve value. The main 

benefit of the Krupkowski material model is the correct description of the material behaviour 

between the limits of proportionality and strength. Therefore for the search of constants of this 

material model we use that part of the tensile curves which describes this plastic area. The 

course of the real and engineering tensile curve is shown in figure Nr. 2. 

Within the parameter settings the goal is to find the constants thanks to which the 

mathematical approximation is as close as possible to reality. Based on the  calculated 

constants  a curve is generated together with the plastic part of the real tensile curve are 

described in figure Nr. 3. The Krupkowski material law is tuned for a specific loading speed. 
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Fig. 1 The real and engineering tensile curve (left) and the plastic part of the real tensile curve (right) 

 

 
 

Fig. 2 the plastic part of the real tensile curve (blue) and its comparison with the computation by using the tuned 

Krupkowski law and given mesh size (red) 

 

Another option to describe the material behaviour in the whole elastic-plastic domain is 

to use the strain-rate curves for a given range of speeds. This means that in this case it is 

necessary to experimentally measure the elastic-plastic behaviour of the material for different 

load speeds. These curves describe the strain rate influence on the plastic strain response for 

the given load speed. The number of curves that can be used as an input for a given material is 

usually limited by the specific software only – in the case of Virtual Performance Solution of 

ESI it is possible to define 8 different curves. These curves describe the strains  depending 

on the strain rates 𝜀̇ the software interpolates the values  

 (, 𝜀̇) from the specified curves. The first curve representing the basic stress-strain law 

𝜀̇ = 0 must always be defined.  

 

3. Three-point dynamic bending 

 

Static tensile tests and  their execution by means of simulations help us create the basic 

material cards. For the dynamic calculations it is necessary to check the behaviour of a 

material under a dynamic loading of which  impact velocity is typical for this particular 

problem. In case of elastic-plastic materials such verification can be done by using the 

dynamic bending test. 

 

The dynamic bending test is characterized by a load of known weight m, which is 

impacting the test sample from a predetermined height. Since the value of the track of the free 

fall is known, the impact speed can be determined with a very high precision. The system 

must be set so that the impact velocity replicated  that speed we require to perform the virtual 

test.  

 

The weight of the impactor can be selected so that permanent deformation of the test 

specimen is approaching the expected deformation of the realtest. The scheme of the dynamic 

bending test si shown  in figure nr. 4. 
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Fig. 3 The scheme of the dynamic bending test 
 

After the impact, the impactor of a given mass m falls onto the test piece which   bents and 

then after the  impact and springback it results  in a permanent deformation yd. The magnitude 

of this distortion can be expressed by the following formula: 

 

  𝑦𝐷 =
𝑮𝑫·𝒍𝟑

𝟒𝟖·𝑬·𝑱𝒛
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An established method of obtaining the material data necessary for the simulation is  

performing dynamic bending tests on real samples and also on a computer model. Then these 

tests are compared to see whether they match up. The acceptable tolerance band is is up to 

10%.  

  

4. Experimental tests 

 

Our experimental tests were carried out on test specimen of the square cross-section with 

dimensions of 50x50 [mm], with a wall thickness of 3 [mm] and a length of 1500 [mm]. The 

test specimen were made of steel of class S355. The impactor mass is 60 [kg] and its impact 

speed pn the test specimen were vd = 8 [m.s
-1

].  

 

Substituting the appropriate values into the formula (2) we can estimate that the theoretic 

value of the maximal bending deformation after springback, without taken into account the 

hardening of the material, is  

 

      𝑦𝐷 = 56.14 [𝑚𝑚]    (3) 
  

In our case it is very difficult to measure the maximum deformation of the test specimen. 

Although the whole course of the test is recorded by a high-speed camera with a speed of 1 

picture for a millisecond, the maximum deformation under our conditions can on;y be read 

and changed only with an accuracy of two-tenths of a millimetre. Hence we decided to 

evaluate the value of the permanent deformation of the test specimen. The actual experiment 

we conducted on 10 identical test specimen, while residual deflection was measured in 3 

places of  each one sample,  The first measurement point was right in the middle of the 

sample, the second  and the third were at a distance of ¼ L  from the underpinning points 

towards the centre  of the test piece. For the footage of f the carried out experiment, see 

Figure no. 5. 
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Fig. 4 Realization of the experiment: Impactor moment of contact with the test specimen (left) and the beginning 

of the springback 
 

 

We used an identical approach in the  case of virtual tests. In the modul VisualMESH™  of 

the software Virtual Performance Solution™ we prepared a finite element model with the 

identical bending test conditions. The model was prepared using mid surfaces, then we have 

given geometry divided into a finite network. For the discretization we used 4-nodes shell 

elements. Subsequently onto the prepared model we applied the initial and boundary 

conditions coincide with the real conditions of the experiment. 
 

 
Fig. 5 Outputs of the simulation: Impactor moment of contact with the test specimen (left) and the beginning of 

the springback 
 

 

5. Obtained results 

 

 The aim of this work was to analyze the extent to which it is possible to use simplified 

material models for complex calculations of dynamic events. For a more complete picture, we 

compared the two most widely used material models with experimental results in 3 

characteristic points of the test specimen. The test results have been included in the following 

table: 

 

The used test method

1 2 3

Measured experimental data -8,1 -45,6 -8,2

Computation through strain-rate curves -8,4 -47,9 -8,4

Computation using the Krupkowski law -8,8 -48,7 -8,7

Deformations in the characteristic 

point of the test sample

 
 

Fig. 6   Comparison of the results of the experiment  

             and computations 
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 Based on the obtained results we can conclude, that the maximum value of the percent 

deviation of the experiment and calculation when using the Krupkowski law is 8.6%. If we 

compare simulation results with the use of strain-rate curves, the maximum value of the 

percent deviation of the experiment and calculation is 5.0% . 

 If we compare the results obtained by calculations with two different material models, 

we can conclude that the maximal percent deviation is up to 2%.  

 

Conclusions  

The present article discusses the use of various flexible-plastic material models for simulation 

of nonlinear dynamic events. The subject is to optimize the material parameters to minimize 

the computational time in compliance with the quality requirements of the numerical 

calculation results. Based on the obtained results we can conclude, the two methods are fully 

applicable, and provide the result in the frame of the permitted tolerance margin percentage 

deviation. In areas with a strong plastic deformation the difference of the results of the 

computations using the Krupkowski law and the strain-rate curves is only 1.6%, while the 

latter method is financially much more expensive. Experiments to measure the strain-rate 

curves have of an order of higher costill there? 

s.  The computation time for the solution with the Krupkowski law is only 6% longer in 

comparison of the computation using the strain-rate curves.  

 

Using the Krupkowski material model, it is possible to finalize the results quickly and 

efficiently, and the results thus obtained are consistent with the results obtained by 

experimental tests. 
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