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Abstract. The paper presents the analysis of flow conditions of cohesive and cohesionless 

bulk materials in a conveyor discharge point of a flat conveyor belt. The analysis was carried 

out for stationary flows at high velocities. It presents mathematical methods of description of 

velocity of material leaving a throwing point of a flat conveyor belt as well as final equations 

which enable the determination of velocity of the material after it has left the throwing point 

(with the accuracy sufficient for practical use). Next, the velocity calculated for the proposed 

mathematical description (for selected material groups) has been compared with the velocity 

obtained from mathematical relations commonly used by engineers. The proposed equations 

for determining the velocity of material beyond the point have been proved useful, since they 

enable excluding the indirect equations. Finally, the difference between the values of velocity 

obtained with the proposed and indirect equations has been determined and the relative error 

for the proposed method has been calculated. 

1. Introduction 

In transport conveyor systems built on the basis of belt conveyors, pouring points are 

important parts. They are crucial elements allowing transporting bulk materials on different 

levels of this type of system. An important issue in a conveyor transport is to ensure proper 

flow of material through pouring points. This involves ensuring continuity of the transported 

material stream and ensuring the required transport capacity of the system. Pouring points 

used in transport systems often take advantage of gravity to transport materials. These types 

of pouring points include e.g. chutes [1], [20]. Another pouring points that cooperate with belt 

conveyors are impact plates [7], [9], [10], [11], [16], [18], [19]. They are to slow down the 

velocity of material to the value corresponding with the velocity of the receiving conveyor in 

the feed point. 

A throwing point with a flat conveyor belt, discussed further, uses a driven belt for moving 

and throwing the material. However, the point is not inclined as described in [5], [6], [8], [14]. 

This means that the angle of inclination of the conveyor belt is 0° [16], [17]. 

In transport systems, slow belt conveyors are most commonly used. They operate with 

velocities below 3 m/s [1], [20], and equations determining the velocity of cohesive and 

cohesionless material beyond the conveyor pulley are described in [14]. However, these 

equations should not be used for fast conveyors. Equations for fast conveyors are presented in 

[14]. They do not take adhesion into consideration, but include the influence of air resistance 

on the velocity of the transported material beyond the head pulley. In the work [17], the 
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influence of adhesion on the velocity of material beyond the point was also omitted. However 

the work included material, kinematic and dynamic parameters. In the work [4] the adhesion 

phenomenon also was omitted.  

In the case of discharge belt conveyors [15], the construction of this type of conveyors and 

the discharge method of the material are different from the ones used for a belt conveyor 

feeding the next pouring point. Thus, equations proposed in [15] designed for estimation the 

velocity of material beyond the pulley, should not be used for fast feeding belt conveyors. 

In [12], only kinematic and geometric parameters for estimation of the velocity of material 

falling down onto a belt conveyor were taken into consideration, whereas in [2], authors 

discuss simple engineering equations describing the velocity of material flowing from a belt 

conveyor. They take into consideration the coefficient of friction of the material against the 

belt but do not take into consideration forces and adhesion affecting onto the material stream.  

Works [5], [6], [8] take into account kinematic, dynamic and material parameters including 

adhesion, but equations presented there are designed for inclined conveyors with ascending 

and/or descending belts. 

Author in [7] analyse the trajectory of material beyond a throwing point depending on the 

velocity of a belt conveyor, but they do not analyse the velocity of the material beyond the 

point where it  reaches the next pouring point. In addition, work [3] refers to the prediction of 

the trajectory of the material beyond the throwing point, but in this case, both fast and slow 

conveyors were taken into consideration. 

Therefore, it was important to propose equations describing the velocity of material 

beyond the pulley of a not inclined belt conveyor, equipped with the belt without cleats for 

both cohesive and cohesionless materials. 

2. Analysis of flow conditions of cohesionless and cohesive materials in the throwing 

point with a flat belt 

In conveyor transport systems, a throwing point refers to a head pulley of the belt 

conveyor. From the pulley, the material is transferred further, as a feed, onto another 

conveyor, which, most often, is located lower and the feed is delivered with the use of a chute 

[1], [20] or an impact plate [1], [6], [7], [9-11], [16], [20]. The material from the throwing 

point may also be thrown directly onto hillocks. 

The analysis of flow conditions of cohesive and cohesionless bulk materials in a throwing 

point with a flat belt is shown in Figure 1 and 2. The analysis was carried out both for fast 

conveyors, where the belt transports the material with the velocity above 3 [m/s], and for 

stationary flow. A belt without cleats was analysed and the influence of air resistance was not 

considered.  

Figures 1 and 2 illustrate magnitudes taken into consideration in the analysis of the flow 

conditions that affect the process of discharging the material from the conveyor’s pulley. 

Geometric, kinematic and dynamic conditions of the motion of elementary mass dm in a 

throwing point, which is not inclined, were taken into consideration. 

In a throwing point discharging cohesionless materials, the elementary mass dm is subject 

to the following forces describing dynamic conditions of its flow (Fig. 1): gravitational force 

dG [N], centrifugal force dF [N], normal force dNxs [N], tangential force dTxs [N]. While 

determining the relations describing the discharge of the martial from the pulley, the inertial 

force dJ [N] formed as a result of action of gravitational force dG, centrifugal force dF and 

forces dNxs, dTxs was also considered. 

In the case of cohesive materials, the dynamic conditions of the flow of the material in the 

throwing point, besides the above mentioned forces, also adhesion force dFa (Fig. 2) was 

considered. The adhesion force forms between the belt and the transported material. 
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Kinematic conditions of the flow of material in a throwing point with a flat belt (Fig. 1 and 

2) include: the velocity of the conveyor belt vt [m/s], the velocity of bulk material stream 

flowing into the head pulley vp [m/s], which is equal to the velocity of the belt, and the 

velocity of material leaving the head pulley vw [m/s]. 

Geometric conditions of material flowing out from the throwing point include the 

following parameters [8]: angle of conveyor descent α [] (in this case α=0°), angle of the 

material stream flowing out of the head pulley βt [°] (in this case βt is the angle of material 

flowing into another point, e.g. impact point), angle coordinate which describes the position 

of infinitesimal mass of material on the head pulley φ [] [8], radius of the head pulley rb [m], 

the average radius of curvature of material stream Rśr [m], thickness of the layer of material 

stream at the moment it flows onto the head pulley hm [m] [8], thickness of the layer of 

material stream leaving the head pulley hw [m] [8]. 

Kinematic and geometric conditions of material flowing out of a head pulley with a flat 

belt for cohesive and cohesionless materials are the same. whereas in the case of dynamic 

conditions – the difference is the adhesion force appears in case of cohesive materials. 

 
Fig. 1. Geometric, kinematic and dynamic conditions of the flow of a stream of cohesionless 

bulk material on a head pulley of a conveyor with a flat belt [own elaboration] 

 
Fig. 2. Geometric, kinematic and dynamic conditions of the flow of a stream of cohesive bulk 

material on a head pulley of a conveyor with a flat belt [7] 
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3. Mathematical model of the flow of a stream of cohesionless and cohesive bulk 

material in a throwing point with a flat belt 

In the analysis of the discharge of material from a throwing point with a flat belt, it was 

assumed that the material is separated from the pulley in point A (Fig. 1 and 2). This is the 

point in which the belt overlaps the head pulley. Regardless of the type of transported 

material, Equation 1 must be satisfied to let the material leave the belt [1]:  

 cosg
R

2v
 (1) 

where: v – belt velocity [m/s], R - radius of the pulley [m], g – gravitational acceleration 

[m/s
2
], α - the angle of the conveyor descend [] [1], [8]. 

For cohesive materials, also Equation 2, taking into consideration adhesion and high 

velocities of the conveyor, must be satisfied [14]: 

1
cos

d
ArF





 (2) 

where: 

mh
a

d
A




  (3) 

Rg

2v
rF


  (4) 

where: v – belt velocity [m/s], γ - specific gravity of bulk material [N/m3], σa – adhesion 

[N/m
2
], hm - thickness of the material stream [m], g – gravitational acceleration [m/s

2
], R - 

radius of the pulley [m] [8]. 

To obtain mathematical relations allowing determination of velocity v(φ) [m/s] of cohesive 

and cohesionless bulk material beyond the throwing points with a flat belt, a system of 

equations was used. The system differs depending on the type of material, and for 

cohesionless material it includes: 

- equation of continuity [8]: 

    Avm  (5) 

- equation of equilibrium [8]: 

  xsTdxsNdcFdGdvmvdvm





   (6) 

- equation describing the contact friction condition on surfaces of walls restricting the 

path of the flow of a bulk material stream for static conditions and cohesionless 

materials (according to [14]): 

xsnws   (7) 

For cohesive materials, the system of equations includes: 

- equation of continuity [8]: 

    Avm  (8) 

- equation of equilibrium [8]: 

  xsTdxsNdaFdcFdGdvmvdvm





   (9) 

- equation describing the contact friction condition on the surfaces of walls restricting the 

path of the flow of a bulk material stream for static conditions and cohesive materials 

(according to [14]): 

  xsanws   (10) 
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In Equations 7 and 9, μxs is a contact friction coefficient for static conditions. The general 

form of the system of equations for cohesionless material takes the form 11 [8]: 

   

 














xsnws

xsTdxsNdcFdGdvmvdvm

Avm









 (11) 

whereas for cohesive materials, the form of the system of equations is as follows [8]: 

   

 

 














xsanws

xsTdxsNdaFcFdGdvmvdvm

Avm









 (12) 

A detailed description of parameters included in the systems of Equations 11 and 12 is the 

same as presented in publication [8], where A(φ) – cross-section of the stream [m
2
], ρ - bulk 

material density [kg/m
3
], m  - mass flow [kg/s]. 

Projection of Equation 6 onto directions of the assumed coordinate system <n,t> (Fig. 1) 

will generate a system of equation as a function of angular parameter φ, which after 

simplification, for cohesionless materials, takes the form:  












0dv m

0GdxscFdxs





 (13) 

For cohesive materials projection of Equation 9 onto direction of the assumed coordinate 

system <n,t> (Fig. 2) will also generate a system of equations as a function of angular 

parameter φ, a simplified form of which is as follow: 













0aFdxsdv m

0GdxsaFdxscFdxs






 (14) 

The solutions to Equations 13 and 14 are respectively differential equations, where for 

cohesionless materials the solution takes the following form 15: 

 
    Rxs g 22vxs 2

d

2dv





 (15) 

and for cohesive materials – the solution is presented by 16: 

 
   

 
















h
a2

1 R gxs 22vxs 2
d

2dv
 (16) 

Equations 15 and 16 are a special case of the Bernoulli equation, which can be written in the 

form (according to [16]): 

    QyPy  (17) 

By integrating Equation 17, equations that allow determining the velocity of the material 

beyond the throwing point for cohesive and cohesionless materials were obtained. For 

cohesionless materials the velocity is described by Equation 18: 

 


 R g xs2
e wCwv  (18) 

and for cohesive materials by Equation 19: 

 
 















h
a2

1R g xs2
e wCwv  (19) 
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The description of parameters included in Equations 11 and 12 is the same as presented in 

publication [8], where Cw - integration constant, R(φ) - an average radius of curvature of the 

stream [m], h φ) - thickness of the material stream (according to Fig. 2, it is the height of the 

material stream lying on the conveyor belt). 

Equations 18 and 19 contain integration constants, which describe Equation 20 for 

cohesionless materials, and Equation 21 for cohesive materials: 

  


 R g 2
pvxs2

e wC  (20) 

 
  

























h
a2

1R g 2
pvxs2

e wC  (21) 

Equations 18 and 19 as well as 20 and 21 differ one from another by an element consisting 

adhesion. 

To obtain a solution, boundary conditions, which are the same for both cohesive and 

cohesionless materials, were taken. Thus, the following boundary conditions, allowing 

determining the integration constant, were assumed [5], [6]: 

  (22) 

    mh5,0
b

r
0

RRR   (23) 

Btv

m
mh





 (24) 

    tv
0

vvv   (25) 

   
 

B mh
 tv

m

 v

m
0

AAA 








 (26) 

Velocity vw allows assuming the following boundary condition [5], [6]: 

tw   (27) 

The value of the velocity of material beyond the throwing point is obtained by applying a 

simple iteration method, assuming initial conditions determined from Equations 22-27. 

To obtain the exact approximation of velocity vw of material leaving the point, the following 

relation should be satisfied: 

wv
wnv

1nw
vwnv














[%] (28) 

where δvw is an acceptable relative deviation of the estimated velocity vw. It is assumed that 

velocity vw was correctly determined if the value of the deviation ranges 1%-2%. 

Parameter α is constant because the conveyor is not inclined, unlike in solutions presented 

in [5], [6], and [8]. 

Equations 18 and 19 were tested to verify if they comply with the assumption that the 

velocity of material directly leaving the head pulley of the conveyor is equal to the velocity of 

the belt. Both equations proved to be compliant with the assumption. 

Equations 18 and 19 can also be used to determine the velocity of material beyond the 

throwing point, in the function of depending on the assumed angle of material inflow to the 

next point, e.g. an impact plate (Fig. 3). In this case, it may be assumed in the proposed 

equations that angle βt is equal to the angle at which the material falls onto a surface (e.g. 

impact plate).  Such an approach is a simplification, but returns results sufficient for practical 

use. 
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4. Indirect equations 

Indirect equations allow determining the velocity of material leaving the throwing point 

which cooperates with an impact point presented in [16], where they were applied for a 

conveyor with an ascending and descending belt. These equations can also be used for a flat 

conveyor. They are suitable mainly for a conveyor supplied with an impact plate. They return 

best results for such application. 

Figure 3 presents the flow conditions of material on a conveyor with a flat belt (the 

conveyor is not inclined), whereas Equations 29-32 allow determining the numerical values of 

parameters that can be seen in Figure 3. These equations are usable regardless the material. 

Indirect equations (Fig. 3) include [16]: 

- equation describing an angle of material flowing onto impact point ξ0: 






















t
2cos2

1w
v2

0
xg

ttgarctg
0

 (29) 

- equation describing the velocity of material flowing onto impact point v0: 

1
0

2tgtcos
1w

v
0

v   (30) 

- equations describing distance parameters, according to Fig. 3: 

  tsin
0

h5,0
b

r
0

s
0

x   (31) 

t
2cos1wv2

2
0

xg

0
xttg

0
y




  (32) 

where βt is an inclination angle of the material stream leaving the conveyor. In this case βt is 

equal 0 because the conveyor is not inclined. 

 
Fig.3. Cooperation of a throwing point with a flat belt and an impact point with a not inclined 

plate [elaborated based on [16]] 

5. Comparison of the presented calculation methods  

Table 1 was presents an example demonstrating the usefulness of the proposed equations. 

It also includes a comparison between the results obtained with the use of the proposed 

equations and the results obtained with the currently used indirect equations. In the proposed 

equations, the indirect equations are omitted, assuming that the angle of the outflow of 
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material from a head pulley is equal to the angle of the inflow of material to the impact plate 

(βt=ξ0). This is a considerable simplification in relation to the currently used indirect 

equations, where not only the velocity of material flowing into the impact plate, but also the 

angle at which it flows into the plate are determined. 

Table 1 presents the comparison of the results obtained with indirect equations and with 

the proposed equations for both cohesive and cohesionless materials. Table 1 also contains 

estimation of the percentage error for results obtained from the proposed equations in relation 

to the results obtained with the use of indirect equations. It also presents the difference 

between the obtained velocities of material at the moment when it falls onto the plate. Initial 

conditions of the material outflow are the same for both calculation cases. 

Some of the values describing the parameters of the outflow of material from the throwing 

point were taken from [8] and [20]. 

Table 1. Determination of the velocity of material beyond the discharge point in relation of the 
analyzed angle at which material flows into impact point [own elaboration] 

Cohesionless material Cohesive material 

- required mass flow m = 350 [kg/s], 

- belt velocity vp = 3,15 [m/s], 

- belt width Bt = 0,8 [m], 

- pulley radius rb = 0,25 [m], 

- angle of inclination of the conveyor belt α = 0 [
o
], 

- gravitational acceleration g = 9,81 [m/s
2
], 

- material bulk density  = 850 [kg/m
3
], 

- specific gravity  = 8340 [N/m
3
], 

- friction coefficient for static conditions xs = 0,50, 

- angle at which bulk material flows into subsequent 

point βt= ξ0 = 41 [
o
], 

- distance between the head pulley and the point at 

which material is discharged s0= 0,9 [m], 

- required mass flow m = 350 [kg/s], 

- belt velocity vp = 3,15 [m/s], 

- belt width Bt = 0,8 [m], 

- pulley radius rb = 0,25 [m], 

- angle of inclination of the conveyor belt α = 0 [
o
], 

- gravitational acceleration g = 9,81 [m/s
2
], 

- material bulk density  = 1380 [kg/m
3
], 

- specific gravity  = 13540 [N/m
3
], 

- friction coefficient for static conditions xs = 0,51, 

- angle at which bulk material flows into subsequent 

point βt= ξ0 = 41 [
o
], 

- distance between the head pulley and the point at 

which material is discharged s0= 0,9 [m], 

- adhesion a = 350 [N/m
2
], 

CALCULATIONS 

- proposed equations 

the first step of approximation 

boundary conditions determining the integration 

constant 
0  

  15,3tv0vvv   
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Btv

m

B

1wA

mh 







 

130,08,0163,0B h
 v

m
AA m

t
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



 

0,3310,1635,025,0mb1śr1w h5,0rRR   
integration constant 

 1w
2
t

2
1w R g ve C xs 

  

6,671 
1wC   

boundary condition determining the velocity 

41tw   

velocity 

CALCULATIONS 

- proposed equations 

the first step of approximation 

boundary conditions determining the integration 

constant 
0  

  15,3tv0vvv   

100,0
8,015,31380

350

Btv

m

B

1wA

mh 




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m
AA m

t
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



 

300,00,1005,025,0mb1śr1w h5,0rRR   
integration constant 





































m
h

a2
1

1w
R g 

2
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xs2
e 1wC  

976,6
1wC   

boundary condition determining the velocity 

41tw   

velocity 
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1w
R g xs2

e 1wC1wv 


  

110,4
1wv   

deviation value 

 
wv

100

wnv

1nwvwnv




 

%236,23
1wv


 

 

approximation is insufficient 

the second step of approximation 

125,0
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B1wv

m

B

2wA

1wh 






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deviation value 
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- indirect equations 
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  tsin
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The relative error δvr for results achieved with the proposed equations and with the indirect 

equations amounts respectively 2% for cohesionless materials and 5% for cohesive materials, 

which is acceptable for practical use. But the value of the error increases with the growing 

distance between the impact plate and head pulley. The difference between the velocity 
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determined with the use of the indirect equations and the proposed equations for cohesionless 

materials amounts 0,08 [m/s], and for cohesive materials amounts 0,21 [m/s]. The minimal 

permissible distance between the throwing point and the impact plate was taken into 

consideration.  

Differences obtained in calculations for values of velocity allow statement that the proposed 

equations can be used for estimation of the velocity of material beyond the throwing point. 

The indirect equations take into consideration kinematic and geometric conditions, whereas 

the proposed equations take also into consideration dynamic parameters, adhesion, the 

coefficient of friction of material against the belt surface, as well as material parameters such 

as material bulk density and specific gravity. 

6. Conclusions 

The presented analysis of the conditions of the flow of cohesionless and cohesive materials 

in a throwing point with a flat belt (non inclined conveyor) as well as the proposed equations 

obtained from the analysis are suitable for engineering calculations and for estimation of the 

velocity of material beyond the head pulley with the accuracy sufficient for practical use. It is 

especially important if the value of the velocity beyond the point must be known, which 

enables the correct selection of parameters of pouring points that cooperate with conveyors, 

and for maintaining the constant capacity of the transport system. The proposed equations 

consider not only kinematics and dynamics parameters of the flow but also material 

parameters. 

The proposed equations, comparing to the indirect equations, give good compliance of 2% 

for cohesionless materials and 5% for cohesive materials. Such value of the relative error was 

obtained for an impact plate operating in angular pouring points, whereas for parallel pouring 

points, where distance between the head pulley and impact plate increases to 1.2 m [20], the 

relative error can achieves almost 10%. 

The proposed equations provide a tool for engineers allowing estimating the value of velocity 

of material beyond the throwing point, which assures the correct capacity of the transport 

system consisting of belt conveyors. The proposed equations prove to be useful in cases 

where a throwing point follows or precedes an impact point, especially in properly selected 

distance between cooperating points, but they don’t consider the air resistance.  

The proposed equations assume that the angle at which material falls onto the subsequent 

point is known. However, the equations may turn out to be useless for the assumed angle at 

which material flows out of the head pulley if the distance is larger than 2 m. 
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