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Introduction 

The application of glass as a structural element has shown a continuous rise recently. Owing 

to the introduction of laminated glass, its use expanded into building construction. Examples 

include roof and floor systems, columns, staircases etc. For this reason, it is necessary to 

apply design methods and material models for the prediction of the laminated glass behavior. 

In the elastic range glass is considered as a homogenous purely elastic material. The polymer 

interlayer has a more complex, time and temperature depend behavior and the experimentally 

obtained properties have crucial influence on the material model performance. The behavior 

of the plastic interlayer is assumed to follow the principles of viscoelasticity and is described 

by the generalized Maxwell chain model. Therefore, the material is characterized by a set of 

stiffness moduli 𝐺𝑖 and 𝐺∞ and viscous elements 𝜂𝑖, see Fig. 1. 

                             

Fig. 1: Generalized Maxwell chain model of the glass interlayer 

 

The temperature-depend behavior is described by the shift factor 𝑎(𝑇) expressed using the  

William, Landel and Ferry (WLF) equation [1]:  

log 𝑎(𝑇) =
−𝐶1(𝑇 − 𝑇𝑅)

(𝐶2 + 𝑇 − 𝑇𝑅)
 (1) 

This relation introduces two additional parameters 𝐶1 and 𝐶2 into the model. All necessary 

details describing the calibration of parameters 𝐺𝑖, 𝐺∞, 𝐶1 and 𝐶2 for the chosen characteristic 

times of the Maxwell cells are provided below. 

The advantage of the generalized Maxwell chain model reside in the description of the 

material response being straightforward both in the time and frequency domain. This property 

is exploited in the calibration procedure where the model parameters are fitted to the 

rheometer measurements in which the samples are exposed to the harmonic shear stress. 
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Experiments 

The experiments were carried out in footstep of [2] in the dynamic shear rheometer HAAKE 

MARS, which operates on the plate-plate shear principle, see Figure 2. This device is mainly 

used for measurement of asphalt properties, therefore evaluating software calculate storage 

and loss moduli assuming that rotary displacement is linearly distributed over the height of 

the sample. This does not hold for laminated glass setup. Glass has generally higher stiffness 

than polymer interlayer and can be assumed perfectly rigid when evaluating the rheometer 

measurements. This means, that whole rotary displacement takes place in the interlayer. For 

this reason, the resulting moduli evaluated directly in the rheometer software must be 

transformed by equation  

𝐺𝑓
∗ =

𝑅𝑎
4

𝑅𝑠
4

∙
ℎ𝑓

ℎ𝑠
∙ 𝐺𝑠

∗, (2) 

which is based on the ordinary theory of elasticity and where 𝐺𝑠
∗ is modulus from the software 

and 𝐺𝑓
∗ is transformed moduli of the polymer. Other parameters are specified in Figure 3. 

Equation (2) also includes effect of different radius of the sample 𝑅𝑠 and radius of the adapter 

𝑅𝑎. 

                             

Fig. 2: Specimen glued to rheometer plates                Fig. 3: Rheometer setup for laminated glass 
 

The cylindrical samples drilled out of the laminated glass had the diameter of 20 mm and 

the thickness of 5+0.76+5 mm. For this specimens, height of glass layers was nearly equal, 

but value of interlayer height had a higher variability and moreover this height was variable 

with change of temperature during measurement. This fact is included in the calculation by 

equation (2). As for the interlayer, attention is limited to the application of EVA (ethylene-

vinyl acetate) polymer ply. The samples were tested in pure shear dynamic excitation. The 

measurements were performed on 7 samples each assuming the temperature sweep of 10°C, 

20°C, 30°C, 40°C, 50°C, 60°C and the frequency sweep of 0.001Hz, 0.01Hz, 0.05Hz, 0.1Hz, 

0.5Hz, 1Hz, 5Hz, 10Hz, 20Hz, 30Hz, 40Hz, 50Hz for each sample. Frequencies in the range 

of 50Hz to 100Hz were also examined, the results however showed an inapplicably high 

degree of volatility. This is obvious from the sample graph displaying the variation of the 

storage modulus in Figure 3. Graph of loss modulus of the same sample is shown in Figure 5. 

Each sample was tested the same measurement scenario. First day specimen was glued to 

rheometer by high stiff epoxide glue to prevent any relative rotation between the sample and 

the adapter. The storage and loss moduli for each temperature over whole frequency domain 

was measured the following day, which took about 9 hours including the warming periods. 

The third and the fourth day this scenario was repeated without the measurements at 

frequency of 0.001Hz. The data for temperature 20°C for these three cycles are shown in 

Figure 6 and indicate then 𝐺∗ is not only time and temperature depend, but depends also on 

load history.  

Other methods of experimental measurement of laminated glass interlayer properties is 

summarized in [4]. 



  

3 

 

 
Fig. 4: Storage modulus                                         Fig. 5: Loss modulus  

 
Fig. 6:  Storage modulus for temperature 20°C during three consecutive cycles 

Calibration 

The rheometer is able to measure discrete values of the storage and loss moduli for a specified 

set of frequencies and temperatures. The goal of the calibration procedure is to describe the 

components of the complex shear modulus 𝐺∗ = 𝐺′ + 𝑖𝐺′′ by two continuously curve in time 

and frequency domain. The generalized Maxwell-chain model is used here which fully 

describes these two curves by a series of the real shear moduli of the Maxwell cells 𝐺𝑖 and 𝐺∞ 

accompanied by the shift factor parameters 𝐶1 and 𝐶2. The calibration of the Maxwell model 

without temperature dependency is performed first since it lead to linear regression problem. 

Storage and loss moduli for one temperature and 𝑛 Maxwell cells have following forms 

𝐺′(𝜔) = 𝐺∞ + ∑ 𝐺𝑖

𝑛

𝑖=1

𝜔2𝜏𝑖
2

𝜔2𝜏𝑖
2 + 1

, 

𝐺′′(𝜔) = ∑ 𝐺𝑖

𝑛

𝑖=1

𝜔𝜏𝑖

𝜔2𝜏𝑖
2 + 1

, 

in which unknowns are the set of shear moduli 𝐺𝑖 and 𝐺∞ and relaxation times 𝜏𝑖.  

Relaxation times are usually chosen so they cover the desired range of frequencies and are 

treated as constants during calibration. With this assumption, storage and loss modulus are 

linear in parameters 𝐺𝑖. For fitting is used common least square method. It is minimizing 

following square of residues  

𝐹(𝐺𝑖, 𝐺∞) = 𝑟2 = ∑(𝐺′(𝜔𝑗) − 𝐺𝑗̅
′
)

2
𝑚

𝑗=1

+ ∑(𝐺′′(𝜔𝑗) − 𝐺𝑗̅
′′

)
2

𝑚

𝑗=1

, 

where 𝑚 is number of measured discrete points and 𝐺𝑗̅
′
, 𝐺𝑗̅

′′
 is set of measurement. 

Minimizing conditions  
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𝜕𝐹

𝜕𝐺𝑖
= 0,

𝜕𝐹

𝜕𝐺∞
= 0 

leads to a system of linear equations. Implicit solution for unknown parameters was shown 

in [3]. 

For fitting a master curve is necessary to include temperature effect to the calibration. 

Certain temperature is chosen as reference (for this paper it is 𝑇𝑟 = 20°𝐶) and other curves 

are horizontal shifted in logarithm scale by WLF shift factor (recall eq. (1)). This bring 

nonlinearity to calibration and an iteration algorithm must be employed. The Gauss-Newton 

algorithm, developed by combining the Newton numerical method and the least square 

method, appears as a suitable method for this task. This method iteratively minimizes a 

nonlinear sum of squares of differences between the measured and computed moduli for given 

frequencies and temperatures. In particular, the function to be minimized attains the following 

form 

𝐹(𝐺𝑖, 𝐺∞, 𝐶1, 𝐶2) = ∑ (𝐺′ (𝜔𝑗 ∙ 𝑎(𝑇𝑗)) − 𝐺𝑗̅
′
)

2
𝑚

𝑗=1

+ ∑ (𝐺′′ (𝜔𝑗 ∙ 𝑎(𝑇𝑗)) − 𝐺𝑗̅
′′

)
2

𝑚

𝑗=1

, (3) 

where again 𝐺̅′ and 𝐺̅′′ are the measured values. Parameters 𝐺𝑖 appear in the function of 

storage modulus 𝐺′(𝜔) and loss modulus 𝐺′′(𝜔) in a linear form whereas parameters 𝐶1 and 

𝐶2 appear in the WLF equation in a nonlinear form. In Gauss-Newton method it is favorable 

to rewrite problem in matrix form. First let us arrange fitting parameters to vector 𝜷 with 

length 𝑛 + 3, thus    

𝜷 = {𝐺1, … , 𝐺𝑛, 𝐺∞, 𝐶1, 𝐶2}T . 
The residues are stored in vector 𝒓 with length 2𝑚, having the form 

𝒓(𝜷) = {𝐺′ (𝜔𝑗 ∙ 𝑎(𝑇𝑗)) − 𝐺𝑗̅
′
,  𝐺′′ (𝜔𝑗 ∙ 𝑎(𝑇𝑗)) − 𝐺𝑗̅

′′
}

T

. 

With this notation, function to be minimized have new vector form 

𝐹(𝜷) = 𝒓 ∙ 𝒓T 
and minimizing condition is 

𝜕𝐹

𝜕𝜷
= 𝟎. 

With vector notation, one iteration step in Gauss-Newton iterative method can be written as 

𝜷(𝑠+1) = 𝜷(𝑠) − (𝐉s
T𝐉s)−1𝐉s

T ∙ 𝒓(𝜷(𝑠)), 

where 𝜷(𝑘) is the parameter vector in 𝑘-th iteration and 𝐉s is the Jacobian matrix, which is 

evaluated at every step by the expression 

𝐉s =
𝜕

𝜕𝜷(𝑠)
∙ (𝒓(𝜷(𝑠)))

T

. 

Form of Jacobian matrix in general form expressed analytically is placed in appendix. 

Another possible approach is divide 2D state space of parameters 𝐶1 and 𝐶2 to discrete 

mesh. This state space is potentially infinite, so reasonable boundaries for these parameters 

must be predefined. In every node characterized by a pair 𝐶1,𝑖 and 𝐶2,𝑖 the optimization 

problem becomes linear and the linear least square method can be directly used. The nonlinear 

optimization problem then reduces to search of 𝐶1 and 𝐶2 only and can be managed by 

directly exploring a 2D parameter space. It seems to be difficult set ideal boundary to find 

appropriate pair of parameters, but fortunately objective function (3) remains almost constant 

in direction of constant ration of 𝐶1 and 𝐶2. Thus it is sufficient to find quasi minimum in 

adequately selected mesh space. 
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Tab. 1: Fitted parameters 

Parameter Value Parameter Value 

𝐺1 1377617.035 𝐺12 114046.6687 

𝐺2 348848.0308 𝐺13 269952.2981 

𝐺3 365819.0478 𝐺14 156390.66 

𝐺4 222148.234 𝐺15 184947.1187 

𝐺5 352833.5303 𝐺16 194636.113 

𝐺6 301196.1553 𝐺17 219579.655 

𝐺7 230536.3582 𝐺18 107275.2708 

𝐺8 210105.2379 𝐺19 242276.0251 

𝐺9 381157.4811 𝐺∞ 901388.198110 

𝐺10 169933.1055 𝐶1 272.830000 

𝐺11 231241.6111 𝐶2 706.590000 

 

These methods were used to calibrate the generalized Maxwell model and the WLF 

equation parameters given the experimentally obtained data from one specimen. Measurement 

was performed according to the scenario described in section Experiments. Output of this 

experiment are three sets of data, each for individual loading cycle. The calibration for first 

loading cycle, i.e. the first day measurement, is provided below. The reference temperature of 

20°C, number of Maxwell cells 𝑛 = 19 and the relaxation times 

𝜏𝑖 = {0.001, 0.01, 0.1, … , 1𝑒14, 1𝑒15} were considered. The obtained values of parameters 

are shown in tab. 1 and the fitted storage modulus is illustrated in Fig. 7, showing the 

computed curve as a solid line and the original measured data by crosses. The measured data 

above 50Hz (decreasing branch of curve) are also shown in the figure, but they were not used 

during the calibration. The same results are shown in Figure (8) in form of a master curve. 

Crosses, which lies on solid curve, represent first loading cycle while the points under solid 

line are second loading cycle. It follows from this graph that the master curve can precisely 

represent data for specific loading cycle, but cannot include difference between loading 

cycles. If calibration is done for data from both loading cycles, the optimal master curve is 

slightly more compliant. The choice about which loading cycles should be used for the 

calibration depends mainly on the domain of application of the model. 
 

 
     Fig. 7:  Fitted storage modulus                         Fig. 8: Fitted mastercurve for 1

st
 run 
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Conclusions 

The text briefly described the methodology for measuring viscous properties of laminated 

glass interlayer in rheometer apparatus. The paper also summarized the post processing of the 

measured data considering the layered configuration of the glass specimen. The data show 

that the measurements done in one cycle over all selected temperatures give relatively 

consistent results but repeating the measurement cycle on the same sample after 24 hours give 

less stiff response suggesting that the polymer interlayer has a complex load history 

dependence. The calibration of the viscoelastic generalized Maxwell chain model based on 

the measured data was presented. The linear problem of calibrating the model to certain fixed 

temperature curve becomes nonlinear when the measurements at more temperatures is 

considered and the calibration procedure extends to shift factor parameters as well. This is 

caused by nonlinearity of the William-Landel-Ferry equation. Two calibration strategies are 

described in the paper solving this nonlinear problem and the results of calibration of specific 

specimen with EVA polymer interlayer are provided. It is evident from the measured data that 

the shear modulus obtained at certain frequency and temperature generally decreases with 

rising number of measurements. This makes the calibration more difficult because calibrated 

parameters depend on which data is selected. In other words, the model can be fitted to one 

selected measurement cycle quite precisely but when all measurement cycles are utilized, the 

polymer interlayer behavior can be characterized with a single master curve only with certain 

degree of precision. 

Acknowledgement 

The financial support provided by the GAČR project No. GA16-14770S and project 

SGS17/043/OHK1/1T/11 is gratefully acknowledged. 

References 

[1] Malcolm L. Williams, Robert F. Landel, and John D. Ferry, The Temperature Dependence 

of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids, Journal 

of the American Chemical Society, vol. 77 (1955) 3701-3707 
 

[2] L. Andreozzi et al., Dynamic torsion tests to characterize the thermo-viscoelastic 

properties of polymeric interlayers for laminated glass, Construction and Building Materials, 

vol. 65 (2014) 1-13 

 

[3] T. Janda, A. Zemanová, J. Zeman, and M. Šejnoha, Finite element models for laminated 

glass units with viscoelastic interlayer for dynamic analysis, High Performance and Optimum 

Design of Structures and Materials II (2016) 

 

[4] Zulli, F., Andreozzi, L., Giovanna, R. and Fagone, M., Test Methods for the 

Determination of Interlayer Properties in Laminated Glass, Journal of Materials in Civil 

Engineering, 2016 

  



  

7 

 

Appendix 

Jacobian matrix have following form (matrix have size (𝑛 + 3) × 2𝑚): 
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where for 𝑗 ∈ < 1; 𝑚 > 

𝜕𝑟𝑗

𝜕𝐺𝑖
=

(𝑎𝜔𝑗)2𝜏𝑖
2

(𝑎𝜔𝑗)2𝜏𝑖
2 + 1

 

𝜕𝑟𝑗

𝜕𝐺∞
= 1 

𝜕𝑟𝑗

𝜕𝐶1
= ∑ 𝐺𝑖

𝑛

𝑖=1

2𝑎𝜔𝑗
2𝜏𝑖

2 ∙
𝜕𝑎
𝜕𝐶1

(𝑎2𝜔𝑗
2𝜏𝑖

2 + 1)
2 

𝜕𝑟𝑗

𝜕𝐶2
= ∑ 𝐺𝑖

𝑛

𝑖=1

2𝑎𝜔𝑗
2𝜏𝑖

2 ∙
𝜕𝑎
𝜕𝐶2

(𝑎2𝜔𝑗
2𝜏𝑖

2 + 1)
2 

 

where for 𝑗 ∈< 𝑚 + 1; 2𝑚 > 
𝜕𝑟𝑗

𝜕𝐺𝑖
=

𝑎𝜔𝑗𝜏𝑖

(𝑎𝜔𝑗)2𝜏𝑖
2 + 1

 

𝜕𝑟𝑗

𝜕𝐺∞
= 0 

𝜕𝑟𝑗

𝜕𝐶1
= ∑ 𝐺𝑖

𝑛

𝑖=1

𝜔𝑗𝜏𝑖 ∙
𝜕𝑎
𝜕𝐶1

∙ (1 − 𝑎2𝜔𝑗
2𝜏𝑖

2)

(𝑎2𝜔𝑗
2𝜏𝑖

2 + 1)
2  

𝜕𝑟𝑗

𝜕𝐶2
= ∑ 𝐺𝑖

𝑛

𝑖=1

𝜔𝑗𝜏𝑖 ∙
𝜕𝑎
𝜕𝐶2

∙ (1 − 𝑎2𝜔𝑗
2𝜏𝑖

2)

(𝑎2𝜔𝑗
2𝜏𝑖

2 + 1)
2  

and where  

𝜕𝑎

𝜕𝐶1
= exp (

−𝐶1(𝑇 − 𝑇𝑅)

(𝐶2 + 𝑇 − 𝑇𝑅)
) ∙

𝑇𝑅 − 𝑇

𝐶2 + 𝑇 − 𝑇𝑅
 

𝜕𝑎

𝜕𝐶2
= exp (

−𝐶1(𝑇 − 𝑇𝑅)

(𝐶2 + 𝑇 − 𝑇𝑅)
) ∙

𝐶1(𝑇 − 𝑇𝑅)

(𝐶2 + 𝑇 − 𝑇𝑅)2
 

 


