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Abstract. The paper deals with determining the modal parameters of mechanical system by 

using Enhanced Frequency Response Function which is obtained from Complex Mode 

Indicator Function. The aim of the paper is to present the advantages of this approach for a 

case when the FRF matrix consists of many degrees of freedom. The analyzed object is a 

system with four degrees of freedom with viscous damping. A model of the system and all 

calculations are realized in Matlab. The modal parameters are determined by two different 

ways. In the first case, the modal parameters are determined for a spatial model by eigenvalue 

calculation. In the second case, the modal parameters are estimated in the frequency domain 

using an iterative Rational Fraction Polynomial method from enhanced frequency response 

functions. At the end, the computational efficiency of the proposed approach is studied. 

Introduction 

Modal analysis is a part of mechanics. It serves to analyze and to determine dynamic 

properties of structure. These features include natural frequency, mode shape and damping. 

Analyzed system can be described by a spatial model (mass matrix  M , damping matrix  B  

and stiffness matrix  K ), modal model (spectral matrix 2    and modal matrix   ) and 

response model (frequency response function matrix  H    ) [1, 2]. Modal analysis can be 

divided into the following approaches: a) experimental modal analysis, where frequency 

response functions are obtained experimentally; b) numerical or analytical modal analysis, 

where frequency response functions are computed from spatial model [3].  

Analytical solution 

Let us consider four degree of freedom system (Fig. 1) with vicious damping. Its 

mathematical model is given by system’s matrices: 
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where  M ,  B ,  K  are the mass, damping and stiffness matrices. 
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Fig. 1 Four degrees of freedom system. 

 

The frequency response functions (FRFs) of the system was calculated analytically and are 

shown in Fig. 2a. All together represent the FRF matrix  H     that is used in the next 

calculations. Modal parameters were determined by eigenvalue solution and are listed in 

Table 1. Mode shapes are shown in Fig. 2b. 

a)   b)  

Fig. 2 a) FRFs of the system, b) Mode shapes of vibration. 

Table 1 Modal parameters of the system determined analytically.  

Mode 1. 2. 3. 4. 

Frequency [Hz] 17.65 41.03 61.40 83.32 

Damping ratio [%] 0.55 1.29 1.93 2.62 

Modal parameter estimation 

The complex mode indicator function (CMIF) is based on singular value decomposition of 

FRF matrix and can be used to initial estimate of natural frequencies of the system. Singular 

value decomposition can be represented by equation: 

        
H

H U V                   , (2) 

where      is a diagonal matrix of singular values,  U     is a left singular matrix and 

 V     is a right singular matrix. Mode shapes are represented by the left singular vectors of 

the matrix  U    . The right singular vectors in matrix  V     represent the corresponding 

modal participation factors. CMIF is equal to the square of the singular value magnitude: [6] 

)()(CMIF 2  kk Σ .                                                                                                             (3) 

Peaks detected in the CMIF plot indicate the existence of modes, and the located 

frequencies give the corresponding damped natural frequencies. The CMIF method is able to 

distinguish closed and also coupled modes.  
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The CMIF plot of the example problem is shown in Fig. 3. Four peaks can be seen there 

and every one of them indicates a mode. Peak picking method is used to initial estimate of 

natural frequencies. Initial estimate is important to create enhanced frequency response 

function (EFRF) for each mode. 

 

Fig. 3 CMIF plot. 

 The EFRF method is used to identify natural frequencies, and scaling of an equivalent 

single DOF characteristic that is associated with each peak in the CMIF [7, 8]. The EFRF is 

based on the concept of physical to modal coordinate transformation and can be defined as a 

weighted average of all of the measured FRFs, where the left and right singular vectors used 

as discrete modal filters. This is the way how the modes are isolated. Enhanced frequency 

response function is defined as follow: [4, 9] 

         
H

r rr
eFRF U H V       , (4) 

where  
r

eFRF   is an enhanced frequency response function of r -th mode. The EFRFs 

obtained for each mode of the analyzed system are shown in Fig 4.  

 

Fig. 4 EFRFs of the system. 
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As the next step, the rational fraction polynomial was applied to these functions to estimate 

modal parameters. The rational fraction polynomial is an iterative method to estimation of 

modal parameters from function, which describes dynamic behavior of mechanical system. 

This method says that frequency response function can be written as a ratio of two 

polynomials as follow [5, 10] 
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where kk ba ,  are sought unknown polynomial coefficients. These coefficients are not the 

modal properties direct. Unknown coefficients are achieved by minimizing the error function 

ie which is defined by equation [9, 10] 
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where ih  represents FRF data at frequency i . Minimizing of the error function is performed 

by using least-squares technique. Eq. (6) can be also written for EFRF. This estimation 

method was applied to each of EFRFs. Modal parameters obtain by this procedure are listed 

in Table 2. The comparison of the results in Table 1 and Table 2 shows the good agreement 

between the analytical solution and the estimation process.  

Table 2 Modal parameters estimated from EFRFs.  

Mode 1. 2. 3. 4. 

Frequency [Hz] 17.680 39.372 59.763 81.771 

Damping ratio [%] 0.61 1.14 1.90 2.81 

Computational efficiency of the proposed approach 

The standard estimation procedure is based on the extraction of modal parameters directly 

from FRF matrix. This is effective only if FRF matrix is not too large, otherwise there may be 

problems with the time-consuming computations and lack of memory. In order to avoid these 

problems, the modal parameters can be estimated from Enhanced Frequency Response 

Functions derived from FRF matrix. This allows to include all measurement data while 

retaining the maximum information about the dynamic behavior of the structure. For the 

purpose of comparing the computational efficiency of both approaches, a special program was 

created in Matlab. The program generated FRF matrices with a different number of 

measurement DOFs and measured computational time of the estimation process. The length 

of discrete frequency spectrum was the same in all cases (500 spectral lines). In this study, 

RFP method was used as the estimation algorithm. The results of the comparison are shown in 

Table 3. The results show the significant differences in the duration of the computation and in 

the memory usage, particularly for the large FRF matrix. The modal parameter estimation 

from EFRFs is much more effective. The parameters are determined for a relatively short time 

with minimum memory usage even in FRF matrix with tens of thousands of measurement 

DOFs. If the modal parameters are estimated directly from FRF matrix, the computation time 

and the memory usage increase significantly with an increasing number of measurement 

DOFs. As can be seen, when FRF matrix had 5929 DOFs, the computation failed after 3 h and 
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49 min due to lack of memory. The proposed approach was advantageously implemented in 

software application DICMAN 3D [9] that is used to measure modal parameters by high-

speed digital image correlation method. 

Table 3 Comparison of computational time and memory usage between the standard and proposed 

estimation procedure. 

Number of 

DOF of the 

system 

Modal parameters estimated 

directly from FRF matrix 

Modal parameter estimated from 

EFRFs 

Computational 

time [s] 

Memory used by 

Matlab [%] 

Computational 

time [s] 

Memory used by 

Matlab [%] 

256 6.525 15.2 6.951 4.5 

1024 53.96 39.6 11.89 4.6 

2116 165.4 94.0 16.52 4.7 

4096 1906 94.0 27.65 5.0 

5929 Out of memory - 34.03 5.1 

22500 - - 112.2 6.2 

40000 - - 209.8 7.0 

Conclusions 

The aim of the paper was to consider the accuracy and efficiency of modal parameter 

estimation process when modal parameters are extracted from enhanced frequency response 

functions. These functions represent responses of separated modes in modal space and they 

are described as the response of an equivalent SDOF system. By this way, the data contained 

in the FRF matrix are reduced to a few functions. It is advantageous when the matrix is 

relatively large. The main advantage of the proposed approach lies in a significant reduction 

in memory requirements and computational time while keeping a high accuracy of modal 

parameters. 
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