
 

Determining the Young’s Modulus of a Specimen Using 
Experimental Modal Analysis 

KAĽAVSKÝ Adam1,a, HUŇADY Róbert1,b and PAVELKA Peter1,c 
1Department of Applied Mechanics and Mechanical Engineering, Faculty of Mechanical 

Engineering, Letná 9, 042 00 Košice, Slovakia 

aadam.kalavsky@tuke.sk, brobert.hunady@tuke.sk, cpeter.pavelka@tuke.sk 

Keywords: young modulus, modal analysis, CMIF 

 

Abstract. The paper deals with determining the Young’s modulus of a steel specimen that is 
calculated on the basis of natural frequencies determined by experimental modal analysis. The 
paper described two different approaches to do it. The first approach is based on analytical 
calculation of fundamental bending frequencies of a beam with a rectangular cross section. 
The paper provides results for two cases: free-free beam and fixed-free beam. The second 
approach is based on FEM analysis combined with parameter optimization method. This 
approach is applied on a free rectangular plate the analytical solution of which is more 
complicated.  

Introduction 

We know a lot of engineering problems where the exact knowledge of material parameters 
such as Young’s modulus or Poisson ratio is essential for their solution or for an accuracy of 
numerical models. The material parameters are commonly determined by standard material 
tests. Alternatively, they can be determined by experimental modal analysis where the 
measured natural frequencies are subsequently used for an analytical solution. In the case of 
isotropic materials, it is preferable to perform an analysis of bending beam vibration because 
it is very easy to obtain accurate analytical solution for different boundary conditions [1, 2]. In 
general, it is recommended to analyze a free-free beam because the real stiffness of 
constraints is quite difficult to take into account in the calculation. Moreover, we can very 
well model a free suspension. In the case of orthotropic materials, the solution of plate 
vibration is essential [4]. Unfortunately, there exists no closed form solution for the case of a 
rectangular Kirchhoff plate with free boundaries, but several approximate methods have been 
proposed and applied. Warburton [4] used characteristic beam vibration functions in 
Rayleigh’s method [5] to obtain a useful and simple approximate expression for the natural 
frequencies of vibration of thin isotropic plates. His work was extended by Hearmon [6] and 
applied to special orthotropic plates and again by Dickinson [7] to include the effect of 
uniform in-plane loads. Kim and Dickinson [8] provided an improved approximate 
expression, where they use Rayleigh’s method in connection with the minimum potential 
energy theorem. Iguchi [9] gave solutions for an isotropic rectangular plate, however, he 
limits his determination to squared plates only. Leissa [10] presented comprehensive and 
accurate analytical results for the free vibration of rectangular plates. He applied the Ritz 
method [11] and compared the results with the method of Warburton [4]. However, his work 
is limited to isotropic plates. Leissa’s work was extended by Deobald and Gibson [12] who 
applied the Rayleigh Ritz method to orthotropic plates as well. Gorman [13, 14] solved the 
differential equation for isotropic as well as orthotropic plates using a superposition method, 
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which allows one to full fill the boundary conditions with desired accuracy. Wang and Lin 
[15] presented a systematic analysis for solving boundary value problems in structural 
mechanics, where a weighted residual form of the differential equations is used with 
sinusoidal weighting functions. Recently, this approach has been extended for calculating the 
eigenfrequencies and eigenmodes of an orthotropic plate with completely free boundaries 
using an exact series solution by Hurlebaus et al. [16]. As the quasi-analytical methods can be 
used the concept of sinusoidal equivalent length, the one term Rayleigh method, the three 
term Rayleigh method, the Rayleigh-Ritz method, the superposition method, and the exact 
series solution [17].  

Procedures for obtaining Young’s modulus 

A. Beam vibration 

 
The equation of motion for the bending vibration of a beam with constant cross-section and 
material properties is given by [16] 
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where ( , )w x t  is the transverse vibration of the beam at position x  at time t ,   is the natural 
frequency of the beam, and c  is given by 

EI
c

A
 ,  (2) 

in which I  is the cross-sectional area moment of inertia,   is the mass per unit volume, and 
A  is the cross-sectional area. The natural frequencies of the beam are from 
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where the subscript n  is the bending mode number and 
n  is the constant depending on 

boundary conditions (see Tab. 1). Young’s modulus E  of the beam material can be calculated 
from Eq. (3) as follows 
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Tab. 1 Boundary condition values for the first four bending modes of the beam 
Support condition  1   2   3   4  

Free - Free 4.7300 7.8532 10.9956 14.1371 
Clamped - Free 1.8751 4.6941 7.8539 10.9956 

 
The natural frequencies of the beam were determined by experimental modal analysis. The 

object of measurement was the beam with rectangular cross section made of steel. The 
dimensions of the beam and calculated geometric characteristics and material properties are 
listed in Tab. 2. The mass of the beam was determined by weighing.  
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Tab. 2 Dimensions and calculated geometric characteristics and material properties of the beam 
Dimensions Geometric characteristics 

0.401 m
0.040 m
0.008 m

b

h







   

-4 23.2 10 mA bh    
3

-9 41.7067 10 m
12
bh

I     

Material properties 

1.004kgm   

37832 kg mm

A
     

 
Two types of support conditions of the beam were investigated: free-free and clamped-free 

(Fig. 1). The free-free supporting was realized by two elastic ropes. The experimental modal 
analysis was performed using the measurement system Pulse LAN XI. The responses were 
measured at one point by laser Doppler vibrometer Polytec PDV-100. The beam was excited 
at 18 points by impact hammer Bruel&Kjaer 8206 with aluminum tip.   

 
Fig. 1 Measurement setup for free-free and clamped-free supporting of the beam 

Rational Fraction Polynomial-Z method was used to estimate modal parameters. In both 
cases, the first 5 modes were found, including 4 bending modes and 1 torsion mode. Their 
natural frequencies and mode shapes are shown in Tab. 3. 

 
Tab. 3 Natural frequencies and mode shapes of the beam 

Free - free beam 

     
1: 265,44 Hz 2: 731,27 Hz 3: 1429,97 Hz 4: 1496,95 Hz 5: 2355,81 Hz 

Clamped - free beam 

     
1: 40,528 Hz 2: 252,50 Hz 3: 699,08 Hz 4: 716,36 Hz 5: 1333,02 Hz 
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After substituting the values from Tab. 2 and the natural frequencies of bending modes into 
Eq. 4, Young’s modulus of the beam material was calculated. Its values are listed in Tab. 4. 

 
Tab. 4 Young’s modulus of the beam 

Support condition 1. mode 2. mode 3. mode 4. mode Mean value 

Free - Free 211.81 GPa 210.76 GPa 209.69 GPa 208.28 GPa 210.14 GPa 

Clamped - Free 199.19 GPa 196.84 GPa 192.54 GPa 182.21 GPa 192.70 GPa 
 
Since the analytical solution is expressed for the ideal boundary conditions and does not 

take into account the real stiffness of the support, Young’s modulus values determined for the 
free supported beam are more in line with the expected value than the values determined for 
the clamped beam. From this point of view, it is more preferable to determine material 
constants on the basis of natural frequencies of a free supported specimen. The conditions of 
this type of support can be achieved relatively easily by hanging the specimen with elastic 
ropes or by laying it on a foam pad. A necessary condition is that the frequency of the last 
rigid body mode must be at least ten times less than the frequency of the first flexible mode 
[18]. 

 
B. Isotropic plate vibration 

 
The second procedure is based on finite element analysis that is combined with parametric 
optimization. The object of interest was a rectangular plate of constant thickness made of 
steel. The plate was considered as free on all edges. The free support was realized by putting 
the plate horizontally on three stretched elastic ropes. The responses were measured at one 
point by laser Doppler vibrometer Polytec PDV-100. The plate was excited at 54 points by 
impact hammer Bruel&Kjaer 8206 with aluminum tip. The measurement setup and the basic 
dimensions of the plate can be seen in Fig. 2. 

       
Fig. 2 Measurement setup and the basic dimensions of the plate 

Modal parameters of the plate were determined by Rational Fraction Polynomial-Z 
method. Fig. 3 shows the plot of Complex Mode Indicator Function peaks of which 
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correspond to the natural frequencies. The first peak represents rigid body mode. The natural 
frequencies and mode shapes of flexible modes are shown in Tab. 5. 

 
Fig. 3 CMIF plot of the plate 

 
Tab. 5 Natural frequencies and mode shapes of the plate 

  
1: 511,58 Hz 2: 671,15 Hz 

  
3: 1409,09 Hz 4: 1457,48 Hz 

 
As mentioned above, Young’s modulus value was estimated numerically by parametric 

optimization. The numerical solution was carried out in NX Nastran software. The 
optimization process was based on eigenvalue solution provided by SOL103 Real 
Eigenvalues.  

As the first, 2D CAD model of the plate was created. Shell elements CQUAD8 of 
approximated width 4 mm were used to mesh the model. Subsequently, the material 
properties were associated to FE model. The material density of the plate was determined by 
calculation as follows 

3
4 mkg7715

107161.1
324.1 







abh

m
 , 

180



KAĽAVSKÝ Adam, HUŇADY Róbert, PAVELKA Peter 

where m  is the mass determined by weighing. The initial Young’s modulus value was set to 
150 GPa. Poisson’s ratio was 0.29. There were defined no boundary conditions.  

Geometry optimization module was used in the optimization process. Young’s modulus 
was defined as a design variable that can acquire values from 100 GPa to 300 GPa. The 
objective function was the natural frequency of chosen mode, so the optimization process was 
carried out 4 times. Fig. 4 shows the course of the optimization where target function was the 
frequency of the first mode 511.58 Hz. 

 
Fig. 4 Target and design variable depending on design cycle 

 
The results of the optimization process for each target function are listed in Tab. 6. The 

values of Young’s modulus are in the range from 200.81 to 205.63 GPa. Its mean value is 
203.45 GPa. Tab. 7 shows the absolute percentage error of the natural frequency values. The 
highest mean absolute percentage deviation (MAPD) 0.65% was reached in the third 
optimization process. However, such deviations are entirely acceptable. The first four mode 
shapes obtained by FEM analysis are shown in Fig. 5. 

 
Tab. 6 Results of the optimization process 

Target value of 
objective function 1. mode 2. mode 3. mode 4. mode E [GPa] 

1. mode: 511,58 Hz 511.59 Hz 666.37 Hz 1415.73 Hz 1450.53 Hz 202.70 

2. mode: 671,15 Hz 515.28 Hz 671.16 Hz 1425.90 Hz 1460.96 Hz 205.63 

3. mode: 1409,09 Hz 509.20 Hz 663.25 Hz 1409.11 Hz 1443.75 Hz 200.81 

4. mode: 1457,48 Hz 514.04 Hz 669.55 Hz 1422.49 Hz 1457.45 Hz 204.64 

 Mean value: 203.45 
 

Tab. 7 Percentage error and mean absolute percentage deviation of the natural frequency values 
Target value of 

objective function 1. mode 2. mode 3. mode 4. mode MAPD 

1. mode: 511,58 Hz 0.00 % 0.71 % 0.47 % 0.48 % 0.41 % 

2. mode: 671,15 Hz 0.72 % 0.00 % 1.19 % 0.24 % 0.54 % 

3. mode: 1409,09 Hz 0.46 % 1.19 % 0.00 % 0.95 % 0.65 % 

4. mode: 1457,48 Hz 0.48 % 0.24 % 0.95 % 0.00 % 0.41 % 
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Fig. 5 The first four mode shapes of the plate obtained by FEM analysis 

Conclusions 

The paper presented two methods to determine Young’s modulus of an isotropic material. The 
first of them is a combination of experimental modal analysis and analytical solution, in 
which the known values of natural frequencies are substituted into the well-known equation 
for calculation of bending mode frequencies of a beam. It has been shown that the free 
support of the beam is more advantageous for determining Young’s modulus value. The 
second method uses the parametric optimization that is applied on FE model of a plate and the 
eigenfrequency of a given mode is used as an objective function to calculate Young’s 
modulus. The obtained results confirm that this approach is sufficiently precise and effective.  
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