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Abstract. Materials selection is an essential part of the product design process as materials 
influence most of the product’s properties. Currently design engineers are able to choose from 
up to 160 000 engineering materials. We use the methodology of prof. Ashby and CES 
EduPack software to material selection.  

Introduction 

This paper introduces methods for co-selecting material and section shape. In many 
applications section shape is not a variable. But when components carry bending, torsion or 
compressive loads, both the area and shape of the cross-section are important. By shape we 
mean that the cross-section is formed to a tube, I-section or the like. Efficient shapes use the 
least material to achieve a given stiffness or strength. So material and shape are coupled, 
requiring a method of choosing them together. 

However, shape factors are only developed for simple loading states. Derivation of shape 
factors for combined loads is one of the aims of this paper. 

Selection of Material and Shape 

Shape Factor. We have a many types of profiles as I-sections, rods, tubes, etc. which we can 
use for designing, but which one is the best? That depends on three things, type of load, shape 
of the profile and material. For this purpose we will neglect the material because we will 
compare only the profiles with the same material. Loads we can divided into 5 categories, 
tension, compression, torsion, bending and shear but we will work only with compression, 
torsion and bending because in tension and shear shape of the profile is not important. Also as 
in the previous case, we will compare only the profiles with the same loads.  

Every profile have a volume defined by a cross section and length. Together with the 
density of the material we can get a weight of the profile. If we want compare two different 
shapes of the profiles, we need to do for the constant weight. As we mentioned above, the 
material is constant and also the cross section and length must be constant too. 

From previous information we can see that the only variable which we will use, will be the 
shape of the cross section of the profiles which is define by dimensions. By comparison of 
two different shapes we can get the shape factor which is dimensionless number and this 
number expresses how much is the compared shape better (bigger than 1) or worse (lower 
than 1) than the reference one. 

For every comparison is important to choose the reference shape with which we will 
compare the new one. As the best option is a solid square rod with cross section area A0. 
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If we want to make a comparison of two different cross sections, then firstly we need to 
say if we are searching shape factor for elastic loading or shape factor for onset of plasticity 
(failure). For elastic loading we need to compare second moment of area, for failure we need 
to compare section modulus of area. 

 
Fig. 32 Principle of the shape factor [1] 

As we can see in the Fig. 1, when we compare the shape of the solid square rod with the 
shape of the tubes we can get different results. The tube in the left has the same cross section 
area as the square rod but it is 2.5 times stiffer. The tube in the right has the same stiffness as 
the square rod but it is 4 times lighter. 

As we mentioned in previous chapter, we have two types of shape factors, the shape factor 
for elastic loading and shape factor of failure. 

The shape factor for elastic bending (𝜙𝐵𝑒 ) is define as a ratio of bending stiffness of solid 
square rod (S0) and compared profile (S) where: 

𝑆 ∝
𝐸 ∙ 𝐼

𝐿3
 (1) 

Here E is Young’s modulus, I is the second moment of area and L is length. 

𝜙𝐵
𝑒 =

𝑆

𝑆0
=

𝐸 ∙ 𝐼
𝐿3

𝐸 ∙ 𝐼0
𝐿3

=
𝐼

𝐼0
 (2) 

𝐼0 =
𝑏0
4

12
=
𝐴2

12
 (3) 

𝜙𝐵
𝑒 =

12 ∙ 𝐼

𝐴2
 (4) 

The factor is dimensionless number that mean that the value of the factor does not depend 
on scale, only on shape. 

The shape factor of failure for bending (𝜙𝐵
𝑓) we can get from equation for bending stress 

(𝜎𝑏). Bending stress is a ratio of the bending moment (MB) and the section modulus (Z). If we 
compare the bending cross section modulus for solid square rod (Z0) with the bending cross 
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section modulus of any other shape (Z) we will gain the shape indicator for strength efficiency 
of the shaped beam 𝜙𝐵

𝑓. 

𝜎𝐵 =
𝑀𝐵

𝑍
≤ 𝜎𝐵𝑚𝑎𝑥 (5) 

𝑧0 =
𝑏0 ∙ ℎ0
6

 (6) 

Because Z0 is section modulus for square rod, then b0 = h0 and then: 

𝑧0 =
𝑏0
3

6
=
𝐴
3
2

6
 (7) 

𝜙𝐵
𝑓
=
𝑍

𝑍0
=
6 ∙ 𝑍

𝐴
3
2

 (8) 

Similar shape factors characterize stiffness and strength in torsion. For elastic twisting: 

𝜙𝑇
𝑒 = 7.14 ∙

𝐾

𝐴2
 (9) 

And for failure in torsion: 

𝜙𝑇
𝑓
= 4,8 ∙

𝑄

𝐴
3
2

 (10) 

Where K is torsional moment of area and Q is torsion cross section module. 
 
Maximum values for shape factors depends on materials and we can gain theoretical 

maximum values from equation: 

𝜙𝑒 = 2√
𝐸

𝜎𝑦
 (11) 

Where E is Young modulus and 𝜎𝑦 is Yield strength. Maximum theoretical values of shape 
factors for few basic material are listed in the Table 1. 

Tab. 3 Limits for Shape factors [1] 

Material Max 𝝓𝒆 Max 𝝓𝒇 

Steels 65 13 

Aluminium alloys 44 10 

GFRP and CFRP 39 9 

Unreinforced polymers 12 5 

Woods 8 3 

Elastomers < 6 - 
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Material Indices that Include Shape 

This paper introduces methods for co-selecting material and section shape. We use the 
methodology of prof. Ashby and CES EduPack software to material selection [2]. The 
methodology of materials selection is based on material indices. This chapter explains the 
ground of the material indices and their interconnection with the shape factors. A wider 
explanation is in the book [1]. 
Materials selection is based on and driven by engineering design process of a given product. 
The requirements on the product are the inputs for this process. The requirements can be 
divided into three categories: function, constraints, goals and free variables. The function is 
defined by the purpose of the part, e.g. to support load. The constraints are conditions that 
must be met, e.g. maximum deflection or maximum dimensions. During the design process 
there are some goals to be achieved. We might want the product to be as light or as cheap as 
possible. Some parameters might be adjusted to maximize the fulfilment of goals. These are 
free variables. 

In Fig. 2 engineering design-driven materials selection scheme is shown. Design 
requirements are translated into product specification suitable for materials selection. This can 
be done by deriving of material indices. The constraints set out limit values of certain 
properties. The goals define the material indices for which we seek extreme values. If a goal 
is not bound with a constraint the material index becomes a simple material property. 
Otherwise the index becomes a group of properties. 

 

 

Fig. 33 Engineering design-driven materials selection 

The performance of a part is given by three parameters: functional requirements (F), 
geometrical dimensions (G) and material properties (M). It can by expressed by the equation 
below: 

     MfGfFfP 321   (12) 

The performance for is maximized when we maximize  Mf3  which is called material 
index. Each combination of function, goal and constrain leads to a material index which 
makes this method general an applicable for a wide range of problems. 
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Material index for a stiff, light (bending) beam. The most usual mode of loading of 
engineering structures is bending. All these structures carry bending moments, they are 
beams. The requirement here is for a beam of specified stiffness and minimum mass. 
Function: Beam 

 
Constraints:  
Length L is specified (geometric constraint)  
Bending stiffness is specified as S* (functional constraint) 

𝑆 =  
𝐶𝐸𝐼

𝐿3
 =  

𝐶𝐸𝐴2

12𝐿3
≥ 𝑆∗ 

 

(13) 

𝐼 =  
𝑏4

12
 =  

𝐴2

12
 (14) 

Objective:  
Minimize mass m of the beam 

𝑚 = 𝐴 𝐿 𝜌 (15) 

Performance metric m: 

𝑚 =  (
12𝐿5𝑆

𝐶
)

1
2

  (
𝜌

𝐸
1
2

) (16) 

Material index for light, stiff beam is: 

(
𝐸
1
2

𝜌
) (17) 

This is material index that does not depend on shape. 
Material index that include shape. But stiffness and strength-limited design depends on 
shape of cross-section of components. For stiff, light beam material and shape are coupled, 
requiring a method of choosing them together. 

 
For the square beam of 

𝐼0 =
𝐴2

12
 (18) 

whereas for the shape beam 

𝐼 =
𝜙𝑒 ∙ 𝐴

2

12
 (19) 

m = mass 
A = area 
L = length 
 = density 
b = edge length 
S = stiffness 
I = second moment of area 
E = Youngs Modulus 
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The resulting equation for the metric m shows how the mass of the beam depends on the 
mechanical constraint it must meet (S) on the section shape (𝜙𝑒 ) and on the material of which 
its made (ρ/E1/2). The quantity (ρ /(𝜙𝑒𝐸)1/2) can be thought as a “shaped-material index”. 

 
Material index that include shape for light, stiff (bending) beam is: 

(
𝜙𝑒𝐸

1
2

𝜌
) (20) 

Selecting material-shape combinations 

For mechanical designers is the most often goal of designing to reach a minimum mass of 
construction. From this reason is useful to connect shape factor indicator with material 
indicator together. If we do this, we will get the indices as you can see in the Tab. 2. 

Tab. 4 Indices with shape [1] 

 
For example, materials for stiff, shaped beams of minimum weight: 

• Fixed shape (e fixed):  choose materials with low 𝜌
𝐸
1
2

 

• Shape e a variable: choose materials with low 𝜌

(𝜙𝑒∙𝐸)
1
2

 

Tab. 5 Suitability of materials [1] 

Material 𝜌 [𝑀𝑔/𝑚3] 𝐸 [𝐺𝑃𝑎] 𝜙𝑒,𝑚𝑎𝑥 𝜌/𝐸
1
2 𝜌/(𝜙𝑒,𝑚𝑎𝑥 ∙ 𝐸)

1
2 

1020 Steel 7,85 205 65 0,55 0,068 

6061 T4 Al 2,70 70 44 0,32 0,049 

GFPR 1,75 28 39 0,35 0,053 

Wood (oak) 0,9 13 8 0,25 0,088 
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For fixed shape (up to 𝜙𝑒 = 8) is wood the best solution. For maximum shape (𝜙𝑒 =
𝜙𝑒,𝑚𝑎𝑥) are Al-alloys the best solution. Steel recovers some performance through high 
𝜙𝑒,𝑚𝑎𝑥. 

Shape factors created by numerical analysis 

Theory of material indices developed by professor Ashby assumes developing of indices 
based on analytical solution [1]. It needs to know analytical (mathematical equations) model 
of a chosen physical phenomenon. But in many cases, only numerical solution is known or it 
is difficult to create analytic solution or arrange parameters during process of creation a 
material index or shape factor. 

The method of creating shape factors using numerical solution is based on analysis of FEM 
solver output data. During FEM output analysis, changes of a solved object parameters 
against changes of calculated deformation or stress are compared. The aim of comparison is to 
find equation of a factor using regression, logarithm or elementary equations. This paper 
describes creation of shape factors of fixed beam with rectangle cross section. 

 
First step of analysis is to define scope of analysis: 

 Function: beam, one end fixed, other end free and loaded by moment (bending,  
torsion or its combination) 

 Objective: minimize stress (von Mises) 
 Constrains: linear elastic material, length 
 Free variables: width, height, load 

Tab. 6 Analysis parameters 

Parameter Symbol Type Bending 
factor 

Torsion 
factor 

Combined 
factor 

Width B Shape 
parameter Variable Variable Variable 

Height H Shape 
parameter Variable Variable Variable 

Length L Constant Constant Constant Constant 

Material 
properties E, υ Constant Constant Constant Constant 

Bending 
moment Mb Load Variable 0 Variable 

Torsion 
moment Mt Load 0 Variable Variable 

 
First step is modelling a parametric geometry of the beam. In this case, Design Modeller 

application from ANSYS bundle was used. The geometry was linked to Static Structural 
module. Material of beam must be linear elastic, steel was selected. Application of loads and 
constrain is described on the picture (Fig. 3): 
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Fig. 34 Loads and constrains in FEM analysis 

The analysis does not consider the effect of fixed constrain. Parametric model of the beam 
is a little bit longer than considered, but stress results were calculated at a result plane. The 
result plane is normal to beam axis and its distance from free end of the beam is the same as 
considered length L of a beam (Fig. 3).  

It is also necessary to create design points, which are used to changes of simulation 
parameters. Design points must be created according change of the shape of cross section and 
table Tab. 4 above. Shape of rectangle cross section is defined by equation: 

𝑠ℎ𝑎𝑝𝑒 =
𝐻

𝐵
 (21) 

For all cases in this paper: 

𝐻 ≥ 𝐵 (22) 

It is necessary to eliminate influence of cross section size, so the cross section dimensions 
should pass the condition: 

𝐻1𝐵1 = 𝐻2𝐵2 = 𝐴0 (23) 

Simulations of examples bellow were calculated using FEM system ANSYS Workbench 
17. Result analysis of FEM output was done in Python 3 with math libraries developed under 
SciPy project. 
Shape factor for pure bending. Creation of bending shape factor is relatively simple, 
because there is direct dependence of normal stress on the dimensions of cross section. 

ANSYS output data was analyzed using equation: 

𝜆𝑝 = ln
𝜎𝑖+1
𝜎𝑖

⋅ (
𝑝𝑖+1
𝑝𝑖
)
−1

 (24) 

where p is parameter which influence is analyzed (in this case B or H) and λp its estimated 
exponent. The result of analysis of FEM output are values: 

𝜆𝐵 = 1 (25) 

𝜆𝐻 = −1 (26) 

Estimated shape factor should be something as: 
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𝜓 = 𝐵𝜆𝐵𝐻𝜆𝐻 =
𝐵

𝐻
 (27) 

where ψ is estimated solution for bending factor. It is necessary to verify slope of equation 
of estimated factor ψ: 

𝜓 = 𝐵𝜆𝐵𝐻𝜆𝐻 =
𝐵

𝐻
 (28) 

where λs is slope correction exponent and its value is: 

𝜆𝑠 = 0.5 (29) 

Result of previous analysis is shape factor for beam loaded by bending moment (in physics 
mean, lower value is better design): 

𝜁1 = 𝜓
𝜆𝑠 = (

𝐵

𝐻
)
0.5

= (
𝐻

𝐵
)
−0.5

 (30) 

The shape factor of bended beam was created from numeric values, in this case better 
design has lower value of shape factor (lower stress). According to prof. Ashby’s theory [1], it 
was transformed to get the highest value for the best design: 

𝜙𝐵
𝑓
= 𝜁1

−1 (31) 

𝜙𝐵
𝑓
= √

𝐵

𝐻
 (32) 

where ζ  sign is shape factor with physics mean (better design has lower factor values) and 
ϕ sign the prof. Ashby form of shape factor (better design has highest factor value). Prof. 
Ashby published the same form of shape factor for beam loaded by bending moment [1]. 
Shape factor for pure torsion. Torsion shape factor was created similarly as bending shape 
factor. After preliminary analysis, solution was estimated in form: 

𝜒 =  
𝐻

𝐵
+ 1 (33) 

The result of second analysis is shape factor for the beam loaded by torsion (in physics 
mean, lower factor value is better design): 

𝜁2 = (
𝐻

𝐵
+ 1)

3
7
 (34) 

Torsion shape factor modified to prof. Ashby form: 

𝜙𝑇
𝑓
= 𝜁2

−1 = (
𝐻

𝐵
+ 1)

−
3
7
 (35) 

Prof. Ashby published this factor with different equation [1]: 

𝜙𝑇 𝐴𝑠ℎ𝑏𝑦
𝑓

= 1.6 ⋅ √
𝐵

𝐻
⋅

1

1 + 0.6 ⋅
𝐵
𝐻

 (36) 

Comparison of values of prof. Ashby’s version of shape factor and torsion shape factor 
based on FEM (booth in physical mean, Fig.4): 
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Fig. 35 Comparison of values of prof. Ashby and FEM factors 

One of the properties of shape factors is presented below - ability to determine stress of a 
loaded object. Suppose that there is any beam loaded by torsion moment, maximal shear 
stress τ1 is known. The goal is to create a new better design. Shear stress τ2 of a new design 
should be determined using equation: 

𝜏2 = 𝜏1 ⋅
𝜙𝑇2
𝑓

𝜙𝑇1
𝑓  (37) 

Tab. 7 Stress prediction comparison of prof. Ashby and FEM factors 

Design B H factor 
type 

factor 
value 

Calculated 
stress (FEM) 

Stress estimated 
by factor 

Old 20 mm 80 mm 
Ashby 1.437 

192 kPa 
- 

FEM 1.993 - 

New 34.3 mm 46.6 mm 
Ashby 1.050 

139 kPa 
140.3 kPa 

FEM 1.445 139.2 kPa 

In this example (Tab. 5), booth shape factors has similar results. Unlike the previous 
example, there are two different equations, each of them provides different values. It is a 
question if this phenomenon is desirable due to the current state of the theory, where shape 
factors are compared against a given base geometry during creation [1]. Analysis of FEM data 
is based on another principle – comparison changes of stress result against given input 
parameters. However, the next example shows benefit of some relationship of FEM based 
shape factor value on value of calculated stress. 
Combined bending-torsion shape factor. Creation of combined bending-torsion shape 
factor is more difficult than previous shape factors. The reason is stress distribution of 
rectangle cross section shape of the beam. There are two different types of stress in two areas. 
Let’s see on the picture bellow (Fig. 5). There are two areas market by point 1 and 2. Highest 
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stress could be in one of them or booth, depending on values of bending moment and torsion 
moment. 

 
Fig. 36 Areas of higher stress 

In the case of dominant bending moment (or pure bend), it is important to evaluate normal 
stress and shear stress in the point 2. For dominant torsion moment (or pure torsion) of the 
beam, there is shear stress in the point 1. In this case, von Mises stress in point 1 is higher 
than stress (von Mises) in point 2. The situation is explained on the picture (Fig. 6) bellow. 

 
Fig. 37 Stress in point 1 and 2 

The solution of this problem is a little bit complicated, but can be solved by von Mises 
yield criterion. Shear stress in point 1 is described by shape factor ζ2. Shape factor ζ1 
describes normal stress in point 2. It remains to create shape factor for shear stress in point 2. 
From the picture (Fig. 6) above is evident, that shear stress in point 2 drops (when shape ratio 
of cross section grows). There is minimum of shear stress around 1.6 value of cross section 
shape ratio. Then shear stress increases (if shape ratio still grows). It seems an equation that 
describes this phenomenon could be: 

𝜔 = (
𝐻

𝐵
− 𝐶)

2

 (38) 

219



KRATOCHVÍL Martin, MAZÍNOVÁ Ivana, HRDLIČKA Filip 

As mentioned, von Mises yield criterion will be used. To be used correctly, all (particular) 
shape factors (ζ1, ζ2, ζ3) must be normalized. It means values of all shape factors must have the 
same relative ratio against stresses described by them. Factors ζ1 and ζ2 have relative ratio 10 
(compared to von Mises stress), it means they are 10 times higher than stresses described 
them, if the beam is loaded by 1000 N.mm bending or torsion moment. Particular factors ζ3 
should be created with the same relative ratio requirement. After some analysis, final version 
of shape factors ζ3 was created: 

𝜁3 =

𝐻
𝐵
+ (

𝐻
𝐵
− 2)

2

5 ⋅ (
𝐻
𝐵
+ 1)

+ 1.1 (39) 

Normalization is explained in the picture (Fig. 7) below, all stresses were multiplied by 10: 

 
Fig. 38 Calculated stress compared to factors prediction 

Relative size of bending moment and torsion moment described by coefficients: 

𝑘𝑏 =
𝑀𝑏

𝑀𝑏 +𝑀𝑡
 (40) 

𝑘𝑡 =
𝑀𝑡

𝑀𝑏 +𝑀𝑡
 (41) 

Formula of combined bending-torsion shape factor based on von Mises yield criterion 
(equation which multiplies the set makes relative ratio 10 against von Mises stress): 

𝜁𝑐 =  max{√3 ⋅ (𝜁2
𝑘𝑡

√3
)
2

, √(𝜁1 ⋅ 𝑘𝑏)2 + 3 ⋅ (𝜁3 ⋅
𝑘𝑡

√3
)
2

} ⋅ √1 + 3 (42) 

Equation bellow is shape factor for beam loaded by combination of bending moment and 
torsion moment (in physics mean, lower value is better for design): 

𝜁𝑐 = 2 ⋅  max

{
 

 

𝑘𝑡 ⋅ (
𝐻

𝐵
+ 1)

3

7
, √(𝑘𝑏 ⋅ (

𝐻

𝐵
)
−0.5

)
2

+ (𝑘𝑡 ⋅ (
𝐻

𝐵
+(

𝐻

𝐵
−2)

2

5⋅(
𝐻

𝐵
+1)

+ 1.1))

2

}
 

 

  (43) 
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where Mb is bending moment and Mt torsion moment. Combined bending-torsion factor in 
the form of prof. Ashby form can be calculated using equation: 

𝜙𝐵𝑇
𝑓
=
1

𝜁𝑐
 (44) 

Equation of the combined shape factor is relatively complicated, but it can be used to 
create material maps (modified by shape factors [1]) or to find an optimal shape in first stages 
of design process. 

For example, to find an optimal ratio for a one end fixed beam with rectangle cross section, 
if load: 

 bending moment Mb1
 = 1000 Nm 

 torsional moment Mt1 = 2000 Nm 
 

There are two possible solutions – to find minimum on ζc indicator using numerical 
equation solver or draw graph of 𝜙𝐵𝑇

𝑓 : 

 
Fig. 8 Solution of the example of combined load, optimal solution marked by red point 

The picture above explains that optimal cross section parameters ratio is around 2.72, the 
next step is to estimate cross section area size, calculate H and B dimensions and continue 
design process. 

Conclusion 

One of the goals of this paper was to show what the shape factors and materials indices are, 
how they works and why they are beneficial. As the next goal was to try to find out shape 
factor of combined stress compounded from bending and torque.  

As is obvious from last part of this paper, is possible to create a shape factor for combined 
stress. But whole method is complicated and it takes some time. For this reason is suitable to 
creating complex shape factors only for special used where is possible to used it many times. 
For other applications is still better to use FEM analysis. 
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