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Abstract. At present, multiplicative plasticity theories are used to model material degradation 
of hyperelastic materials within the framework of finite-strain elastoplasticity. The theories 
assume that the intermediate configuration of the body is locally unstressed, for which no 
deformation exists that meets the conditions of compatibility. The assumption, however; is in 
contradiction to the theory of nonlinear continuum mechanics, as it violates proper stress 
transformations, resulting from the invariance of the internal mechanical power. As a result, 
the theories and their related material models are not continuum based. In this paper, an 
alternative neo-Hookean material model with internal damping for finite-strain elastoplasticity 
is presented. The model, based on the first nonlinear continuum theory of finite deformations 
of elastoplastic media, can imitate material degradation of the neo-Hookean material under 
excessive dynamic loading. 

Introduction 

Hyperelastic materials, such as rubber, vulcanized elastomers, various types of polymers, 
biomaterials, etc. are nonlinear elastic materials. The materials have a wide range of 
applications in industry. Hyperelastic materials can withstand large strains without 
undergoing permanent deformations or being fractured. The materials are considered to be 
isotropic under elastic loading and their constitutive equations are derived from strain energy 
density functions [1], defined in terms of the stored energy in the material per unit of the 
reference volume at each time instant [2]. In computational mechanics, there are available a 
number of different strain-energy functions to model hyperelastic materials. Without the need 
for completeness, let us mention a few concrete examples of hyperelastic materials and their 
applications. The Mooney-Rivlin material is used to model rubber-like materials and 
polymers [1], whose special case is the neo-Hookean material [1]. The Yeoh material model 
[3] was developed to model carbon-black filled rubber vulcanizates. The Ogden material has 
widespread use in modelling biomaterials and soft tissues [4, 5]. The Blatz-Ko [6] and the 
Arruda-Boyce [7] material models were proposed to model foamed or compressible 
elastomers. The Ogden-Storakers material has widespread use in modelling highly 
compressible foamed elastomers [8]. From among the newer materials, one should mention 
the Bower material [9], the Gent material [10] and the Dill material [11] for modelling rubber-
like solids and polymers. 



 

Contemporary material models for material degradation of hyperelastic materials use 
hyperelastic-plastic based multiplicative plasticity models to model the behaviour of the 
materials within the framework of finite-strain elastoplasticity. Though contemporary 
multiplicative plasticity models are considered to be continuum based, in reality they are not 
if one studies them strictly from the nonlinear continuum mechanics point of view. The 
theories assume that the intermediate configuration of the body is stress-free or locally 
unstressed, for which no deformation exists that meets the conditions of compatibility [12]. 
The assumption, however; is in contradiction to the theory of nonlinear continuum mechanics, 
as it violates proper stress transformations resulting from the invariance of the internal 
mechanical power. 

The aim of this paper is to present a study of material degradation of a silicone specimen in 
uniaxial tension using a thermodynamically consistent neo-Hookean material model with 
internal damping. The model, which is based on the first nonlinear continuum theory of finite 
deformations of elastoplastic media [13], can imitate material degradation of the neo-Hookean 
material under excessive dynamic loading. In this paper a few selected analysis results are 
presented and briefly discussed.  

Theory 

The constitutive equation of the material. Hyperelastic materials are nonlinear elastic 
materials, whose constitutive equations are derived from strain energy density functions [1]. 
When in addition, they undergo material degradation during their mechanical loading, the 
materials are often modelled as elastoplastic, using the accumulated plastic strain as a 
measure of the material degradation. Considering the nonlinear continuum theory of finite 
deformations of elastoplastic media [13, 14], the elastic part of the deformation gradient can 
be expressed in the intermediate configuration of the modelled body as [14, 15] 
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The definition of the left isochoric Cauchy-Green tensor is based on the Lagrangian 

multiplicative split of the elastic deformation gradient elF  into a volumetric part el
volF  and an 

isochoric part el
isoF . The left elastic isochoric Cauchy-Green tensor then takes the form [1, 12] 
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Since the material remains elastic in the intermediate configuration, there is no need to 

modify its strain energy density function. In this research neo-Hookean material model is used 
to model the plastic behaviour of hyperelastic-plastic material, whose strain energy density 
function takes the following well-known form [12, 13] 
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where    * *

1 1
el el
iso isoI I tr B B  is the first invariant of the characteristic equation of the 

corresponding eigenvalue problem using the left isochoric Cauchy-Green deformation tensor 
el
isoB  and  detel elJ  F  is the Jacobian of elastic deformation. The model uses two material 



 

parameters, the shear modulus G  and a parameter ,d  which controls bulk compressibility. If 
d  is zero, the material is incompressible. The relationship between the bulk modulus and the 
parameter d  is then defined as [1] 
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where the former can also be expressed in terms of the shear modulus G  and the Poisson’s 
ratio   of the material as follows [16] 
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The stress constitutive function of the material in the intermediate configuration of the 

body then can be expressed as a Kirchhoff stress measure in the form 
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where the deviator of the left elastic isochoric Cauchy-Green tensor is defined as 
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The corresponding elastic 2nd Piola-Kirchhoff stress tensor then takes the form [14, 17]  
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In order to take into account the internal/material damping, the material model is modified 

as follows 
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where elE  is the time derivative of the elastic Green-Lagrangian strain tensor, derived from 
the elastic deformation gradient (Eqn. (1)) as follows [17] 
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and mat vis  is the fourth order material viscosity tensor, which can be calculated using the 
following formula 
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In Eqns. (11), (12) visG  is the viscous shear modulus, vis  is the viscous Lamé constant, 

denotes the symmetric fourth-order identity tensor, I  is the second-order identity tensor, visE
is the viscous Young’s modulus and vis  is the viscous Poisson’s ratio. 

The stress constitutive function of the modified neo-Hookean material with internal 
damping then takes its final form in the current configuration as 
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The reference definition of the yield surface. In this study J2 plasticity with isotropic 

hardening was considered. The yield surface in the material model was defined in the 
Kirchhoff stress space as follows [16, 17] 
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where the von-Mises equivalent Kirchhoff stress is defined as 
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In Eqn. (14) y  denotes the Kirchhoff yield stress, which in the analysis was expressed as  
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where y

  is the constant yield stress and Q  is the maximum hardening stress. Here, the 

parameter 0
11 /pl

UTu X   controls the material hardening/softening. It stands for the axial 

component of the material gradient of the Lagrangian plastic displacement field and is 
determined during uniaxial tensile testing of the material. In Eqn. (16) b  denotes the 
maximum value of 0

11 / ,pl
UTu X   at which the material loses its integrity, i.e. when 0y  . In 

Eqn. (17) the spatial and the material gradients of the plastic velocity field are defined as 
follows, where N  is a unit outward normal of the yield surface and   is the plastic multiplier 
[14, 15] 
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The corresponding formulas at a material point of the specimen during uniaxial tensile 

testing of the material then can be determined as  
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In the analysis, numerical uniaxial tensile testing was used to assess the values of the 
elastic deformation gradient el

UTF , the axial component of the elastic deformation gradient 

11
el
UTF , the Jacobian of the elastic deformation gradient el

UTJ  and the deformation gradient UTF  

of the modelled material. Normally these would be determined experimentally, but since 
contemporary tensile testing does not provide the time-histories of the variables, we used the 
following formulas to determine them numerically [14, 15] 
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Then during the analysis, the numerical uniaxial tensile testing too was realized by solving 

the following equation 
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Here 11UT  is the axial component of the UT τ τ  stress constitutive function of the material 

defined by Eqn. (13), in which the deformation gradient F is replaced by UTF  and the elastic 

deformation gradient elF  by el
UTF . There was no change in the definition of the yield stress y .  

Numerical experiment 

As a numerical experiment, material degradation of a silicone specimen in uniaxial tension 
was studied. The specimen dimensions were 0.05m  0.05m  0.6m  . The elastic material 
properties of the neo-Hookean material model were determined by the collective K.B. Putra 
et. al. [18]. One end of the specimen was fixed, while the second end underwent axial 
deformation by imposing tensile surface traction on it as a product of constant   0.5 p MPa  
pressure and a Heaviside step function. In order to model the grip of the testing machine, the 
specimen was guided in transversal directions by imposing zero displacements in X and Y 
directions at its moving end as shown in Fig. 1. The figure also shows the spatially discretized 
body of the specimen where the arrows indicate the loading. 

 

 
Fig. 1: Spatially discretized specimen in the analysis 

 
The specimen was initially at rest. The analysis was run as transient dynamic until it failed 

to converge using implicit time integration and a 0.00001 s  time step size. Table 1 outlines 
the material properties of the specimen used in the finite element analysis. 



 

Table 1: The material properties of the silicone specimen 

0
3kg m    1520 

G  Pa  229 600 

d    0.00000624054 
visE   Pa s   7310 
vis     0.33 

y
  Pa  350 000 

Q  Pa  50 000 

b    2.0 

Numerical results 

Fig. 2 shows a few selected results at the end of the numerical analysis. These are the axial 
displacement distribution, the accumulated plastic strain distribution, the 1st principal stress 
distribution as a Cauchy’s stress measure, the von Mises stress distribution as a Cauchy’s 
stress measure, the parameter 0

11 /pl
UTu X   and the axial component of the deformation 

gradient 11UTF  at the end of the analysis in the current configuration of the body. The values 

of the parameter 0
11 /pl

UTu X   and of the axial component of the deformation gradient 11UTF   

are calculated from the numerical tensile test of the material.  
 

 

Axial displacement field  m   Accumulated plastic strain distribution    

  

1st principal stress distribution  Pa   von Mises stress distribution  Pa   



 

  

Parameter 0
11 /pl

UTu X      Axial component of the deform. gradient    

Fig. 2: A few selected results at the end of the analysis 
 

As can be seen in the above figure, the maximum axial displacement of the moving end is 
0.29 m  at the end of the analysis, i.e. when the analysis stopped to convergence. The 
maximum elongation is 48.3 %, which approximately corresponds to 60 % of the 
accumulated plastic strain and 143 % of the parameter 0

11 /pl
UTu X   that controls the isotropic 

hardening process. The axial component of the deformation gradient coming from the 
numerical uniaxial tensile test of the material is about 2.53 at the end of the analysis. 

 

Axial displacement time-history curve 
 at node N25E80 

Accumulated plastic strain time-history curve 
at node N82E62 

The time-history curve of the parameter 
0

11 /pl
UTu X   at node N82E62 

von Mises stress time-history curve  
at node N82E62 

Fig. 3: A few selected time-history curves 
 



 

Fig. 3 depicts a few selected time-history curves. These are the axial displacement time-
history curve at node N25 of element E80 at the moving end of the specimen, the accumulated 
plastic strain time-history curve, the time-history curve of the parameter 0

11 /pl
UTu X   and the 

von Mises stress time-history curve at node N82 of element E62. The locations of the nodes 
N25E80 and N82E62 are depicted in Fig. 1. As can be seen in the above figure, the material 
degradation starts approximately at 0.0056 s  and continues until the end of the analysis, 
which can distinctly be seen in the time-history curves of the accumulated plastic strain and 
the parameter 0

11 /pl
UTu X   respectively. Similarly, the von Mises stress value rapidly 

increases in elastic loading and also during material hardening, but at a decreasing pace in the 
hardening stage. When the stress reaches its maximum at 0.014 s , i.e. when the maximum 
load-carrying capacity of the body has been reached, the von Mises stress starts to decrease 
until the analysis fails to converge. Such behaviour, shown on the von-Mises stress time-
history curve of the Cauchy’s stress of the neo-Hookean material, is characteristic of all 
materials under excessive loading. Material softening is caused by internal damaging 
processes in the material, which in phenomenological numerical analyses are taken into 
account by the uniaxial stress-strain curve of the material.  

 

 
Fig. 4: The uniaxial Kirchhoff stress-strain curve of the material 

 
Fig. 4 shows the uniaxial stress-strain curve of the neo-Hookean material used in the 

analysis. As it was mentioned in the above, the parameter  0
11 /pl

UTu X   controls the 

hardening/softening process. When its value exceeds 0.6, the material softens. 
It also should be noted that the von Mises stress and the 1st principal stress values as 

Cauchy’s stress measures are lower than their values as Kirchhoff stress measures. This is due 
to the fact that the Jacobian of deformation is 1J   during the whole loading process, where 
considering that / Jσ τ , caused the aforementioned decrease [15]. 

Conclusions 

In this research uniaxial tension of a silicone specimen under dynamic loading was studied 
using a modified neo-Hookean material model with internal damping. The material model is 
based on the first continuum theory for finite deformations of elastoplastic media, which 
allows for the development of objective and thermodynamically consistent material models. 
The results of such material models are independent of the model description and the 
particularities of the model formulation. Although our analysis results seem to be reasonable, 
the proper verification of the model requires thorough material testing in order to determine 
all material parameters of the presented neo-Hookean material model. In addition to this, 
uniaxial tensile testing has to be extended by deformation gradient determination, which in 
general is not the subject of current material testing procedures. 
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