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Abstract. As generally accepted today, the model is a purposefully simplified concept of a 
studied phenomenon invented with the intention to predict – what would happen if … 
Accepted assumptions (simplifications) consequently specify the validity limits of the model 
and in this respect, the model is neither true nor false. The model, regardless of being simple 
or complicated, is good, if it is approved by an appropriate experiment. When we are 
modelling particular phenomena of Mother Nature, the question of truth becomes thus 
irrelevant since the models we are designing, checking and using, either work or do not work 
to our satisfaction. So it is obvious that we rather strive for robust models with precisely 
specified limits of validity and not for philosophically defined categories of truth and 
falsehood. From it follows that it is the validity of models, theories and laws that is of primary 
importance. 

Introduction 

The author ponders about things that necessarily come into engineering mind when the 
results obtained by theoretical, numerical and experimental approaches in solid continuum 
mechanics are correlated and compared with a pious wish to ascertain which of them are 
‘truer’ or closer to 'reality'.  This invokes many questions. How is the truth related to 
consistency and validity of theoretical, numerical and experimental models we are inventing 
and employing? What is the role of thresholds in physics, engineering, computation and in an 
experiment? The doubts stemming from uneasy answers to above pertinent questions are 
complemented by discussing examples from theoretical, numerical and experimental results 
obtained by solving dynamical problems in solid continuum mechanics. 
 
Model vs. experiment 

To get rid of doubts we often claim that it is the experiment, which ultimately 
confirms the model in question. But experiments, as well as the subsequent numerical 
treatment of models describing the nature, have their observational thresholds. And 
sometimes, the computational threshold of computational analysis is narrower than those of 
an experiment. From this point of view, a particular experiment is a model of nature as well. 

Another mental hindrance we might have, in our incessant quest for truth, is the lack 
of precise definitions of certain mechanical quantities. Definitions of conceptually defined 
quantities as force, stress, energy, etc. are rather intuitive and often circular. 

 
 
 
 
 



 

 

Examples and hints 
Practical examples from the field of stress wave propagation tasks will be presented 

with the intention to show remedies required to avoid ‘well-conceived’ ideas, errors and 
blunders. 
 
Example_1. Wavefront singularities and threshold uncertainty  

It is a good practice to have a solid theoretical background at hand. When the stress 
wave propagation tasks, induced by shocks and impact, are treated, one should be aware of 
the fact that there are two fundamental stress wave types – namely the longitudinal and 
transversal ones. This fact was explained by Christiaan Huygens, (1629 – 1695). The 
wavefronts of longitudinal (also called P, primary, irrotational, dilatational, extensional) and 
transversal (S, shear, rotational, equivolumetrical) are schematically depicted in Fig. 1 for an 
elastic halfspace loaded by a point force whose time distribution is prescribed by the 
Heaviside function.  Also, the appearance of the wavefront of so the called Schmidt’s wave, 
introduced by the surface points, which were already hit by the longitudinal wave, become 
sources of the slower – i.e. transversal – waves, is depicted.  

In this respect, it should be emphasized that a frequently used term ‘the sound velocity 
in solids’ is wrong and unjust. Actually, we have distinct speeds for 1D, plane stress, plane 
strain, and 3D cases.  
 
 
 
 

 

 

 

 

 

 

 

 

Fig 1. Wave fronts in elastic half space due to the sudden application of a point force 

These phenomena are easily ‘proved’ by finite element computations as shown in Fig. 
2. The upper part of the figure shows the velocity distribution of in an elastic solid due to a 
point loading, whose time distribution is given by the rectangular pulse. The depicted vector 
directions justify the accepted terminology – longitudinal and transversal waves. Also, the 
appearance of so-called Rayleigh waves, characterized by elliptic patterns of particles in the 
vicinity of the body’s surface, is shown. See [1].  

The lower figure, also a result of finite element computations, clearly shows the 
appearance of Schmidt’s waves and the effect of reflections on the opposite boundary. 



 

 

  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Computed wavefronts 
 
Lamb’s problem 

The task is schematically illustrated in Fig. 3. The original Lamb's analysis employs 
Fourier superposition of harmonic waves for the transient normal loading on a half-space. 
Later Cagniard presented a numerical method for the inversion of the Fourier's transform, and 
Brepta [2] and others were able to carry out the inversion analytically even for cases with 
more complicated boundaries. The analytical solution the Lamb's problem on a free boundary 
is relatively simple and is available in a closed form giving space-time distributions of radial 
and axial displacements. It is attributed to Pekeris, whose analytical formulae, presented in 
[3], are easy to evaluate. Computed results, depicted in space-time coordinates in Fig. 4, show 
two significant singularities as well as arrivals of longitudinal, shear and Rayleigh waves. 

The existence of singularities in our models (and the solid continuum is a model) 
always indicates certain unjustified assumptions and/or simplifications accepted at the 
beginning of the modelling process.  In this case, the singularities occur due to the application 
of the point force, which, strictly speaking, is a forbidden phenomenon in continuum 
mechanics. 



 

 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Lamb’s problem 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Lamb’s problem – analytical solution 
 
Seemingly unproblematic model of elastic continuum has embedded singularities in it. 

For example a point force, a frequently used tool in engineering analysis, is a forbidden entity 
in continuum mechanics since it leads to a singularity response – this is manifested by the fact 
that the displacement under the application of a point force tends towards infinity.  To a 
certain extent this property is retained when the continuum is treated by means of a FE model. 
Actually, it is smeared out by the existence of shape functions but with diminishing meshsize 
it is well observable by the increase of displacement under the application of a point (nodal) 
force. The FE mesh made of ‘null-sized’ elements would provide the infinite displacement 
under the application of a nodal force as the continuum model. So making a finer and finer 
mesh we are representing better and better those continuum properties that are mathematically 
correct but physically unattainable. This is a sort of paradigm we are used to live with. 
Singularity in displacement response to a point loading, Rayleigh waves and crack analysis 
are well-known examples both in continuum and its FE representation. See [4]. 
 



 

 

Example 2. – Dispersion 
In finite element computations of stress wave propagation tasks, the dispersion 

phenomena significantly influence the accuracy and reliability of obtained results. That’s why 
we focus our attention on the subject of dispersion in detail.  

Dispersion is a medium property characterized by the fact that the velocity of the 
propagating harmonic wave depends on its frequency. Consequently, the wave packages, 
being composed of the whole spectrum of frequencies, are distorted during their passage 
through the medium. 

A seemingly academic theoretical subject of spatial and temporal dispersion in 
discretized continuum solid mechanics still has significant practical consequences for current 
users of commercial finite element packages. 

Studying the subject of dispersion allows understanding and minimizing the 
unpleasant side effects typical for the finite element computations of non-stationary dynamics 
tasks of solid computational mechanics. Also, the ’correct’ determination of mesh size and the 
time step can be safely determined. It is shown that the Fourier analysis is an excellent tool 
for checking the obtained results and for the safe estimation of their validity. 

In solid continuum mechanics, we distinguish material, geometrical, spatial and 
temporal types of dispersion. The material dispersion is induced by the damping properties of 
the medium through which the wave propagates. The geometrical dispersion occurs due to 
changing the geometrical shapes of waveguides through which the waves propagate, The 
spatial dispersion is typical for the numerical approaches based on discretization in space,  in 
which originally continuum structure of material is replaced by small finite parts – elements, 
and finally, the temporal dispersion is typical for the numerical solution of transient tasks – 
the output quantities, instead of being described by continuous functions of time, are 
evaluated in discrete time intervals only. 

In solid continuum mechanics, there is a group of the wave propagation tasks which 
are purely dispersionless. As examples, the propagation of stress waves in unbound 1D, 2D, 
and 3D spatial geometries could be mentioned. See [1], [5]. The theoretical cases described 
and solved there can be efficiently exploited as useful etalons for judging the seriousness and 
amount of dispersion errors in discrete media. 

On the other hand, the FE model of continuum is generally of dispersive nature, see 
[7], [8]. To show and explain dispersion phenomena in detail, let’s study the time response of 
a thin rod modelled by 1D constant strain elements, while the behaviour of idealized 
dispersionless solid continuum, represented by the wave equation, can serve as a suitable 
etalon. 

Studies concerning the finite element dispersion analysis of 2D and 3D elements are 
numerous – see [7], [8], [9]. The conclusions, shown for the 1D wave equation and for its 1D 
finite element model, are quantitatively valid for 2D and 3D elements as well. 

It should be emphasized that in 1D continuum, there is only a single speed of wave 

propagation, i.e. /0 Ec  .  

However, due to the existence of normal and shear stresses in 2D and 3D continua, 
there are two kinds of stress waves that could propagate in an unbound medium. See [1], [5]. 
There are the primary (P, longitudinal) and transversal (S, shear) waves – their speeds are 
different. The speed formulas and values (in m/s), for a typical steel material 
( 3.0,kg/m7600,Pa101.2 311  E ), are as follows. 
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In Fig. 5 the speeds of wave propagation for 1D constant strain elements with 

consistent and diagonal mass matrices (L1C and L1D) are compared with those of 2D 
constant strain elements for an equilateral triangle with consistent and diagonal mass matrices. 
The right-hand part of the figure depicts the propagation speeds the longitudinal (upper group 
of curves) and transversal (lower group of curves) waves as functions of the dimensionless 
wavenumber. As we have seen before, the elements with consistent mass matrix (plotted by 
dashed lines) overestimate the ‘correct’ speed of propagation (horizontal lines) while the 
speed of propagation for elements with the diagonal mass matrix is systematically 
underestimated. In the discretized 2D continuum the speed of propagation is furthermore 
influenced by the direction of the wave propagation, indicated by the   parameter in the 
figure. This means that a discretized 2D medium exhibits the anisotropy behaviour, not 
existing in an ideal 2D model of solid continuum. See [10]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Dispersion properties for constant strain elements in 1D and 2D 
 

On the x-axis there are indicated values of another parameter, namely 0lkΛ  , 

where k  is the number of elements that could be ‘squeezed’ into the considered wavelength. 
One sees that if there are 16 elements into a wavelength, then the dispersion error is negligible 
– for only 2 elements, the dispersion error is considerable. On should emphasize that the 
dispersion errors could be minimized, but not completely eliminated. 



 

 

Generally, the results of 
modelling should be 
independent of the method 
being used. This is not always 
so as shown in Fig. 6, where the 
same task – propagation of a 
halfsine pulse – is treated using 
consistent and mass matrix 
formulations respectively, 
resulting in different positions 
of the dispersion side effects, 
i.e. the ‘false’ vibrations 
appearing – either in front of or 
behind the pulse.  
 

 
Fig. 6. Consequences of mass matrix formulation 

 
The dispersion analysis of higher order 1D elements (i.e. quadratic and cubic), see [7] 

revealed that using these elements in 1D, we get the a chance to increase the cut-off limit of 
the highest available frequency but at the expanse of higher computing costs and of the 
appearance of embedded band pass filters.  The dimensionless phase velocities as functions as 
dimensionless frequencies for 40 linear (L1), 20 quadratic (L2) and 13 cubic (L3) finite 
elements are depicted in Fig. 7. Approximately, the same number of degrees of freedom was 
used. One can observe that for the higher order elements, the first part of dispersion curves are 
‘improved’, the dispersion curves, however, consist of distinct branches that are separated by 
certain frequency regions (called the cut-off filters) through which the particular frequencies 
cannot propagate. For the L2 element, the second part of the dispersion function is called the 
acoustic branch. For the L3 element, there is also the third part which is traditionally called 
the optical branch. The attributes C and D appearing by the L1, L2 and L3 identifiers signify 
the consistent and diagonal mass matrices formulations. Generally, using the higher order 
elements we get a longer spectrum with ‘acceptable’ dispersive properties, not differing much 
from that of the ideal continuum. But at the cost. 

The effects of dispersion induced anisotropy in 2D modelling of stress wave 
propagation are shown in Fig. 8 for a body assembled of square elements with bilinear shape 
functions. You might notice it is direction dependent. Different meshes, characterized by the 
ratio of the mesh size (q) to the wave length ( Λ  ), are considered. 

The polar dispersion diagrams for bilinear and serendipity biquadratic finite elements 
with the consistent mass matrix and for four different dimensionless wavelengths of 
propagation wave are shown in Fig. 9.  

 
 



 

 

Fig. 7. The frequency spectra of higher order 1D elements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Bilinear square element 
 

 
 
 
 



 

 

 
 
 

 
Fig. 9. Quadratic square elements 

 
Polar dispersion diagrams for a plane square 4-node bilinear (on the left) and 8-node 

serendipity biquadratic (on the right). Finite elements with the consistent mass matrix for four 
different dimensionless wavelengths are presented. See [11]. 
 
Example 3. – Computational and experimental thresholds 

Limits of all kind of analyses (analytical, numerical and/or experimental) depend on 
the observational resolution – threshold, which is typically a minimum value of a signal that 
can be detected by the system. 

Validity limits are checked by comparison with analytical methods, comparison with 
experiment, self-assessment, and statistical tools and by FFT analysis. 

In this paragraph, the investigation 
of the stress wave propagation in an impact 
loaded shell by Double Pulse Holographic 
Interferometry is compared with a 
corresponding finite element analysis.  The 
task is schematically depicted in Fig. 10. 
The shell was loaded by an exploding wire. 
  
 

 
 
Fig. 10. Impact loaded shell 

 
 

Velocities, as functions of time, were experimentally recorded and compared to those 
obtained by finite element computations with two different mesh densities. A rather 
unsatisfactory agreement or both approaches is presented in Fig. 11.  

 



 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 11. Experiment vs. two FE meshes at four locations  
 
Finite element limits 

The FE shell results for the coarse (A1) and fine (A2) meshes are not distinguishable 
in the scale of the figure. Since there is no visible difference of results with mesh refinement 
one can conclude that time step and mesh size are set correctly. From this fact, however, we 
cannot deduce that the results are ‘physically correct’. They are ‘correct’ within the validity 
range applicable to this particular FE model – the shell element a priori assumes what is 
happening within the shell thickness and does not take into account the actual wave processes 
occurring there. 
 
Experimental limits – the first part 

Applying the Matlab improfile function to experimental data allows determining both 
the absolute and relative thresholds of the measurement used. The procedure is outlined in 
Fig. 12. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Experimental threshold analysis 



 

 

 
 
Fig. 13. Numerically simulated threshold. The registered speed of propagation depends on the 

threshold. 
 
The threshold issue is important when the speed of propagation is to be determined by 

experimental means. Observing the first measurable response at a certain time in a given 
distance from the loading point, one can estimate the propagation velocity. This way the 
estimated value depends on the threshold value of an apparatus being used for the 
measurement of a particular physical quantity and is usually constant at the experiment site. 

The observational threshold is usually constant for the considered experimental setup 
being used for the measurement of a particular physical quantity. 

The influence of the threshold value on the measured results could be achieved by a 
numerical thought experiment.   

What would be a common sense approach? Sitting at a certain observational node, 
whose distance from the loaded node is known, one would estimate the speed by measuring 
the time needed for the arrival of the ‘measurable’ or ‘detectable’ signal. And the measurable 
signal is such a quantity that is – in absolute value – greater than a ‘reasonable’ observational 
threshold. And what is a proper value of it is a good question. 

Imagine a standard finite element double-precision computation giving at a certain 
time the spatial distribution of displacements at a node on the surface of a body. Assume that 
the distance of our observational node from the loading node is known. Now, let’s set a 
‘reasonable’ value of the threshold and apply a sort of numerical filter on obtained 
displacements, which erases all the data whose absolute values are less than the mentioned 
value of the threshold. This way, for a given threshold value, we get a certain arrival time and 
from the known distance we obtain the propagation speed. Working with displacements 
normalized to their maximum values allows us to consider the threshold values as the relative 
ones. 

Varying the simulated threshold value in the range from 10-6 to 10-1 we will get a set 
of different velocities of propagation. As a function of the simulated threshold they are plotted 
in Fig. 13. Material constants for the standard steel were used. The horizontal lines represent 
the theoretical speeds for longitudinal waves in 3D continuum, for longitudinal plane stress 



 

 

waves in 2D continuum as well as for the shear waves. Obviously, the shear wave speeds are 
identical both for 3D and 2D cases. 

It is known that the longitudinal waves carry substantially less amount of energy than 
these of the shear and Rayleigh waves and that the surface response, measured in 
displacements or strains, is of substantially less magnitude for the former case.  

One can conclude that for a correct capturing of the longitudinal velocity value, the 
relative precision of at least of the order of 10-6 is required. This is a tough request. The 
relative threshold of the order of 10-3 is more common in experimental practice. However, in 
an experiment with the relative precision of the order of 10-3, one would not detect the arrival 
of longitudinal waves and might wrongly conclude that the first arriving waves are of the 
shear nature and would wrongly estimate the velocity of propagation of the order of 3000 m/s.  

All this fuzz is about margins of our ability to distinguish something against nothing. 
This is, however, crucial for any meaningful human activity. 

Physical and technical aptness and reliability of the model depends not only on a 
threshold value but – and mainly – on application of the model within the limits for which it 
was constructed, i.e. proper satisfaction of initial and boundary conditions, material 
assumptions, mesh properties, etc.  

 
Experimental limits – the second part 
 
Trying to explain the differences in velocity distributions, presented in Fig. 11, we focused 
our attention to the data related to the experimental loading process. As mentioned before, the 
experimental loading was secured by exploding wires. Actually, four experiments were 
carried out to get velocity distributions at the above-mentioned four locations. The time 
distribution of four randomly taken pulses is depicted, together with an ‘average pulse’ that 
was used as an input for the numerical computation, in the first row of Fig. 14.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Troubles with reproducibility 
 

Shown discrepancies in time distributions of kinematic quantities, computed for 
individual pulses, indicate that differences in the loading distributions play a more important 
role than originally believed. 



 

 

In two subsequent rows of Fig. 14 one can observe corresponding Fourier’s power 
spectra of loading pulses in full and detailed views. The spectra were computed a posteriori 
by FFT. First twenty discrete FFT frequencies are plotted only. Having, however, a proper 
hardware or using a real time simulation package, the FFT analysis is readily available at the 
experimental site as well, and could be obtained immediately after the experiment (meaning 
the explosion of the wire) has been carried out.  

The fourth line of subfigures presents the sum of potential and kinetic energies 
supplied by the particular pulse to the loaded body. This quantity – a result of FE 
computations – is not readily available to the experimentalist.  

There are, however, other quantities – available to the experimentalist – that might 
help. Realizing that the first term of the Fourier’s transform analysis is 
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TmeanP .  Which means the same.  

For given pulses, this correlation is shown in the first column of Fig. 15. Without 
going to details one can show that there is another useful correlation, namely, between the 
Euclidian norm of the pulse quantities and the square root of input energy. For details see [4]. 

 

Fig. 15. A hint for analysis of experimental data – statistics and FFT 

 
Example – 4. In FE analysis, the speed of stress wave propagation depends on the 
integration operator  

In order to assess the reliability and precision of time integrating methods, a stress 
wave propagation task was computed using Newmark (denoted NM in the text) and central 



 

 

difference methods (CD). Comparison of axial strains at a certain location of the considered 
body, obtained by both methods, is presented in Fig. 23. The same time integration step (1e-7 
[s]) was used in both cases. For the NM method the consistent mass matrix was employed, 
while the diagonal mass matrix was used for the CD method. 

The left-hand subplot presents the strains in the whole computed time range showing 
the excellent agreement of results due to both approaches.  The agreement documents that the 
accepted space and time discretizations are suitable for this geometry and loading – the 
differences are minimized. Two couples of horizontal lines indicate the areas that are shown 
in detail the in right-hand side subplots. 

The difference between NM and CD solutions can be numerically assessed by means 
of a cantered correlation coefficient which can be geometrically interpreted as an angle 
between NM and CD time vectors by means of the cosine of an angle between two vectors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Different speed of propagation for NM and CD operators 
 

In the upper right-hand subplot of Fig. 23 the positions of theoretical arrivals of 3D 
longitudinal and 1D waves are indicated by red vertical lines. The actual axial strain 
distributions computed by the NM and CD methods are shown as well. From the analysis of 
dispersion properties of finite elements and that of time integration methods it is known that 
the computed speed of wave propagation for the CD approach with diagonal mass matrix 
underestimates the actual speed, while the NM approach with consistent mass matrix 
overestimate the actual speed. The presented results nicely show this. 

What is less known is the fact, that the speed of propagating waves with NM-
consistent modelling is actually ‘infinitely’ large.  

To find the response of a body in time due to the impact loading requires solving the 
system of differential equations in which the inversion of stiffness or mass matrices 
(depending on the mass matrix formulation and on the time integration method being 
employed) is needed. [13]. This way, the sparse structure of relevant matrices might vanish, 
and a sort of unlimited range of influence (both in space and time) could prevail. If we 
worked with infinite number of significant digits we would get a nonzero response over the 



 

 

whole domain for any time greater than zero. Working, however, with standard precision 
arithmetic we will get no ‘measurable’ response in domains where the computed values are, in 
absolute value, less than the computational threshold – the smallest positive floating point 
number. Besides, the limited range of influence is secured by the fact that a substantial part of 
the energy is always carried by low frequency components. See [12]. 

Results of modelling should be independent of the method of solution, but in practice 
the agreement is both the method and the threshold dependent. 

The shown infinite speed of propagation in FE analysis is an artefact of a particular 
method of treating differential equations in time by Newmark method. Even if this fact is 
fundamentally wrong, it does not devaluate the solution itself because its manifestation is well 
below the ‘reasonable’ threshold of observation. 

From the engineering point of view the presented agreement is acceptable. Two methods 
are giving similar results, which a necessary but not sufficient condition for our belief that we 
are on the right track. From the point of view of numerical analysis theory it is important to be 
aware of these artefacts 

 
Limits of finite element analysis 

For fast transient problems as shock and impact the high frequency components of 
solutions are of utmost importance. In continuum, there is no upper limit of the frequency 
range of the response. In this respect continuum is able to deal with infinitely high 
frequencies. This is, however, a sort of singularity deeply embedded in the continuum model. 

As soon as 
we apply any of 
discrete methods for 
the approximate 
treatment of 
transient tasks in 
continuum 
mechanics, the 
value of upper cut-
off frequency is to 
be known in order 
to ‘safely’ describe 
the frequencies of 
interest. 

 
 
 
 
 

 
Fig. 17. Element size vs. frequency 

 
A procedure leading to approximate correlation between the element size and the 

maximum frequency – the model assembled of elements of that size could safely transmit – is 
outlined in Fig. 17.  

A rule of thump, which is easy to remember, is that a 1mm element is ‘good’ for 1 
Mhz frequency. 
 
 



 

 

Example – 5. Impact induced stress wave energy flux. Validation of FE and experimental 
approaches. 

The temporal and spatial distribution of the stress wave energy flux in an axially 
impacted cylindrical tube, whose middle part contains four spiral slots, is studied 
experimentally and numerically. The high-speed recording of transient surface strains was 
used in the experiment, based on 1D theory, while the 3D finite element treatment was 
employed for the numerical analysis. The aim of the paper is to ascertain how reliable is the 
energy assessment based on transient recordings of surface strains and on subsequent 1D 
wave theory reasoning. The presented study is to determine how much of the impact energy, 
which is predominantly of axial (longitudinal) nature, is transferred into torsional (or shear) 
energy mode as well as into other energy modes not seen by the experiment. The task is 
sketched in Fig. 18.  
 Considering the linear elastic continuum and the validity of Hook’s law in the form  

klijklij C   , the internal stress power and the time rate of kinetic energy are as follows 
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these genetic formulae were evaluated in the FE analysis and in the experiment, are in [12]. 

 
 

Fig. 18. FE approach 
 

In FE analysis the energy flux computation can be more naturally assessed by 
analyzing the time history of energy in the whole body and in its parts.  
 



 

 

In experimental analysis it is convenient to evaluate the amount of energy in the body as the 
cumulative energy flux through a cross sectional area, observed within a specified time 
interval.  

The strain gauge rosette orientation and the gauge locations on the surface of the tube 
are indicated in Fig. 19. To avoid parasite bending signals the same strain gauges were 
positioned at the opposite parts of the surface. The ‘experimental’ tube is longer then the 
‘finite element’ one, but the signals, reflected from the supported end of the tube, comes to the 
measurement locations long after the signal recording has been finished. A standard 
Wheatstone bridge set-up with and a fast transient recorder were employed. 

The details of FE computations with emphasis on the proper choice of element sizes 
with respect to frequency contents to be transferred and of determination of integration 
methods and used time steps and  an of experimental setup are in [12]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19. Experimental approach 
 

Comparison of axial strains obtained by an experiment and by the FE element analysis 
is in Fig. 20.  

Is it a bad or a good agreement? Is experiment or FEA closer to reality? Where is the 
truth? Experimental people often say to FE analysts: All your high frequency components are 
just a numerical noise. 

The cut-off frequency of experimental setup had the value of 100 kHz. The Nyquist 
frequency for the FE analysis, based on the integration timestep – which is a sort of 
experimental sampling interval – is 0.5 MHz. 

There are many questions. Among them: What are the experimental limits in this 
particular case?  Can all high-frequency components be attributed to numerical noise? 

Possible answers: The 3D finite element analysis is compared with the experiment 
based on the 1D theory. Only axial and shear strains are measured – radial ones are not. The 
values of measured surface quantities (displacements, strains, velocities) are attributed to the 
whole cross-sectional area. 1D wave theory is used. Smaller frequency sampling rate is 
employed. 



 

 

 

 
Fig. 20. Comparison of axial strains. Raw and filtered data. 

 
The experiment, as conceived in this case, could not ‘catch’ the ‘actual’ frequency 

components higher than its upper frequency limit. 
In this case the upper frequency limit of FE analysis is substantially higher, so the FE 

spectrum is longer. 
A question arises what is the range of computed frequencies which are ‘correct’, 

especially in view of the fact that the FE transfer spectrum is method dependent. Notice the 
differences for NM and CD treatment.  

Since an experiment with a finer time and frequency resolution is not available, the FE 
analysis should help itself to answer the question. Self-assessment by mesh- and timestep 
refinement could help. Remember the Richardson method, known from quadrature analysis, 
where the subsequent halving the integration increment is used for the quadrature error 
estimation. 

Having small differences between two alternative approaches does not automatically 
imply that the results are correct. It only means that for a given loading and the employed 
time and space discretizations, there is almost no ‘measurable’ difference between results 
obtained by two types of approaches. One has to realize that the existence of close solutions, 
stemming from alternative approaches, is only a necessary, but not a sufficient, condition of 
‘correctness’. And what is ‘correct’, in the sense of correct modeling the Mother Nature, is 
difficult to define.  

 
Limits of continuum, FE analysis and experiment 
 
These limits are schematically depicted in Fig. 22, which is a sort of extension of Fig. 17, 
where element sizes vs. frequency are depicted. This time, the limit of continuum is limited 
from above by the austenite steel grain size, and far far above by the atom size. Maximum 
frequency that we are able to capture by the first class transient recorders is of the order of 
1GHz. A range of a practical frequency range of FE analysis is depicted as well.  This 
information might be complemented by a piece of wisdom attributed to S.C. Hunter who 
claims “To neglect corpuscular structure of matter the specimen should be at least 410 times 
larger than the interatomic distance. 
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Fig. 22. Limits 

Conclusions 
 
Mechanical theories, principles, laws and models, used in engineering practice, cannot be 
proclaimed true or false. They are either right (working to our satisfaction) or wrong. 
Regardless of being simple or complicated, they are ‘right’, if approved by an appropriate 
experiment (i.e. conceived in agreement with accepted assumptions of the theory). History 
reveals that wrong theories might appear, but not being confirmed by experiments, are quickly 
discarded as ether or flogiston. Theories are right only within the limits of their applicability. 
We cannot claim that a theory being proved by an experiment is right. The only thing we can 
safely state is that such a theory is not proved wrong. 
 Generally, a singularity appearing in a model always means a serious warning 
concerning the range of validity of that model. Usually, a more general model – having a 
wider scope of validity – is invented removing that singularity. Very often there is no need to 
discard the older and simpler model, since it might perfectly work in the validity range for 
which it was conceived. The role of doubts on our way to understanding the nature is far from 
negative. 
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