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Abstract. The paper deals with the application of non-associated flow rule to the non-
quadratic yield criterion. The utilization resulted in a significant improvement in the predicted 
stress states as well as deformations, which matched the theoretical values and experimental 
observations. The correct calibration of such an advanced plasticity model, and especially its 
plastic potential, will be subjected to a further research. 

Introduction 

The correct plasticity modelling is important when large plastic deformations occur. This may 
be found in many engineering applications [1–4]. The flow rule plays a vital role in the 
plasticity models. It determines the direction of the plastic strain increment. The flow rule 
might be either associated or non-associated. The associated one corresponds to equal yield 
function and plastic potential, which results in the plastic strain increment normal to the yield 
surface. The non-associated flow rule has a distinct yield function from the plastic potential, 
so that the plastic strain increment is not normal to the yield surface but to the plastic 
potential. It might seem as a minor model feature, but it can significantly influence the results 
[5]. It was shown that the force response can be improved by a non-quadratic plasticity model 
a lot [6, 7], but it significantly deteriorates the stress state [8–11] as well as the deformations 
[12]. 

Experiments 

First, standard tensile tests were conducted on aluminium alloy 2024-T351 in order to 
estimate the elastic constants and flow curve. The flow curve estimation was based on the 
iterative procedure until the match between the simulation and experiment was satisfying. 
Then, upsetting tests of notched cylindrical specimens and tensile tests of flat grooved 
specimens were carried out in order to represent specific stress states [11] and complex 
deformations [12]. All the loadings in experiments were realized in the rolling direction of the 
supplied cold-rolled plate. In other words, the specimens’ axes were parallel to this rolling 
direction. 



 

Plasticity modelling 

The experiments were modelled using three basic types of plasticity models. The first one was 
a classical von Mises yield criterion with associated flow rule having the equivalent stress as 
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where 1 2 3     are the principal stresses ordered according to their magnitudes. 

The second model had an associated flow rule as well, while the yield criterion was close 
to the Tresca one. This was utilized by a Hershey yield criterion [13] having the equivalent 
stress defined as 
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where m  is the material constant, which was chosen equal to 100, so that it is close to the 
Tresca yield criterion. This model was implemented into Abaqus explicit finite element code 
using VUMAT user subroutine, as it is not available in that commercial software. 

The last yield criterion was a Mohr–Coulomb one with non-associated flow rule, which is 
built in Abaqus. The yield function is [14] 
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where q  is the von Mises equivalent stress according to the Eq. (1), p  is the hydrostatic 

pressure,   is the friction angle, c  is the cohesion stress and mcR  is a function defined as [14] 
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where   is the Lode angle. This Lode angle can be normalized as 
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The friction angle was set to zero so that the yield criterion corresponded to Tresca one and 
was pressure independent. The cohesion stress was half the estimated flow stress with twice 
the equivalent plastic strain due to its formulation [14] 
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where σ  is the Cauchy stress tensor and d pl  is the plastic strain increment. The plastic 

potential is a hyperbolic function in the meridional stress plane [14] and smooth elliptic 
function in the deviatoric stress plane, which was proposed by Menétrey and William [15] 
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where   is the meridional eccentricity defining the rate at which the hyperbolic function 
approaches the asymptote, 0c  is the initial cohesion stress,   is the dilation angle and mwR  

function defined as [14] 
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where e  is the deviatoric eccentricity and 
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 from Eq. (4) simplifies into [14] 
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Meridional eccentricity was set to 0.001 and the dilation angle to zero so the plastic potential 
was not pressure dependent, while the deviatoric eccentricity was defined as 
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The plastic potential has the shape according to the von Mises (a circle in a deviatoric plane). 

Results and discussion 

The results of computational simulations are compared to experiments in Fig. 1. 
 

 
Fig. 1: Comparison of computational (equivalent plastic strain) and experimental results for 

the compression test 



 

From Fig. 1, it is clear that the non-quadratic yield criterion according to Hershey (close to the 
Tresca one) predicted incorrectly the deformations. Remaining two plasticity models 
predicted the deformations in correspondence with experiment, but the Mohr–Coulomb yield 
criterion with non-associated flow rule resulted in significantly higher equivalent plastic 
strain. 

Computationally obtained stress states for the tensile test of flat grooved specimen are in 
Fig. 2. Theoretically, the deviatoric stress state measure, normalized Lode angle from Eq. (5) 
in this case, should approach zero because the specimen underwent a generalized shear. The 
non-quadratic yield criterion (Hershey) improved the force response, but deteriorated the 
stress state, when compared to the quadratic one (Mises), both associated. The Mohr–
Coulomb yield criterion with non-associated flow rule improved both the force response and 
stress state. But similar problem as in the case of upsetting test arose for this plasticity model, 
which predicted twice the equivalent plastic strain at fracture. 

 

 
Fig. 2: Computational results for the tensile test of flat grooved specimen 

 
This analysis is important, because correct stress state prediction is important especially for 

ductile fracture. It may be crucial for accurate simulation of the crack initiation and 
propagation [16, 17]. 

Conclusions 

The non-associated flow rule has a significant role in the prediction of complex deformations. 
It has also a decisive role in the predicting of correct stress states, which are crucial in the 
ductile fracture simulations. This is going to be a hot topic for further research. Especially, the 
question of higher equivalent plastic strain for the non-associated flow rule when compared to 
the associated one has to be solved. It is also challenging to calibrate such an advanced 
plasticity model correctly. 
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