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Abstract. The article deals with the influence of the choice of the probabilistic model in the 

numerical resp. analytical calculation of fatigue life in the frequency domain. In the 

introduction, the authors present modern probabilistic models that are suitable for application 

in the mentioned problem. The article also includes an experiment where an experimental 

modal analysis and a lifetime test are performed on 10 test-specimens. The results of the 

experiment are compared at the end of the paper with the numerical solution. 

Introduction 

Structural and mechanical systems are often exposed to irregular loads. If these loads are 

known in advance (for example, they are obtained experimentally), a time domain analysis 

based on the values of the rainflow matrix and consequently the accumulation of linear 

damage is generally used to determine fatigue damage and system life [1]. 

In fact, structures such as a car drives on rough road or a wind turbine are exposed to 

random loads (e.g. road surface, wind speed). Such a random load can be seen as performing 

a random Gaussian process, which can be described in the frequency domain using power 

spectral density (PSD) representing the propagation of the mean quadratic amplitude in the 

frequency range [2]. Working with power spectral density has proven to be particularly 

beneficial when working with complicated finite element models, where the frequency 

response calculation is much faster than transient time domain dynamic analysis [3]. 

One approach is the development of frequency domain fatigue assessment methods that 

offer a direct link between spectrum power density and damage intensity or load cycle 

distribution, respectively. Therefore, most authors consider the rainflow method to be the 

most accurate, the frequency domain methods seek to obtain the distribution of cycles by 

rainflow counting over a time domain [4]. 

At present, the analysis of frequency fatigue is dealt with by many authors who describe 

relatively complex load models as multiaxial loads [5-7] resp. random non-Gaussian 

signals[7-9]. 

Theory  

The paper describes methods related to the stationary Gaussian process. These methods are 

divided into narrowband and broadband processes, of which narrowband allows direct 

derivation of cycle distribution. For the broadband process, the relationship of peak 

distribution and cycle amplitude is much more complex. Several empirical solutions (e.g. 

Dirlik [4] and Zhao-Baker [10]) have been proposed, but very few completely theoretical 
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solutions (Bishop [11]). The theoretical solution presented by Bishop is based on the Markov 

process theory and is computationally demanding. However, there is a slight improvement in 

accuracy over the Dirlik method, which is usually the preferred method. 

In 2004, Benasciutti and Tovo [3] compared a group of methods in the frequency domain  

(Wirsching-Light [12], Zhao-Baker [10], Dirlik [4], empirical α 0.75 and Tovo-Benasciutti 

[3]) and found that the Tovo-Benasciutti method matches the accuracy of the Dirlik method in 

terms of numerically simulated power spectral densities. In Table 1 some methods with 

corresponding formulas are mentioned. 

 

Dirlik model. Dirlik created an empirical expression for calculating the probability density 

function, which was obtained using extensive computer simulations using the Monte Carlo 

technique. Although, this model is more complicated than other methods, it is still only a 

function of four spectral moments. However, this solution has a wide range of applicability, 

thus surpassing other available methods. The formula for calculating the assumed cumulative 

damage by the Dirlik method is  
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where 
1 2 3, , , ,D D D Q R  are constants calculated from spectral moments 

0 1 2 4, , ,m m m m  and 

skewness  . iS  in (1) represents normalized stress amplitude.  

 

Table 1: Overview of others formulas for solving the probability density function. 
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Lalanne-Rice 
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Cumulative damage is calculated based on the formula 
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where  E P  represents the peak rate, T  is a time duration, ,k b  are material constants. 
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Practical part 

This part consists of an experiment and a numerical simulation combined with an analytical 

calculation using the Matlab program. 

 

Experiment. It consisted of an experimental modal analysis, in which the eigenmodes, 

eigenfrequencies and damping of the measured specimens were determined, which were used 

to calculate and refine the numerical simulation. The second part of the experiment was a 

fatigue testing at stochastic excitation. The valid measurement was performed on 10 

specimens made of aluminium alloy AL5052-H32 sheet of 4 mm thickness (Fig 1.).  

 
Fig. 1: Testing specimen with dimensions. 

 

Two accelerometers were placed on the specimen. The sensor placed on the flange was 

acquiring the real excitation signal generated by the vibro-exciter, and the second sensor was 

used to measure the response of the examined specimen near the notch. A measuring 

configuration is shown in the Fig 2.  

Experimental modal analysis (EMA) was performed by Bruel&Kjaer Pulse system.              

A modal hammer Type 8206 with an aluminum tip without an additional weight was used to 

excite the specimen. Responses were measured using a Polytec PDV100 laser vibrometer. 

The results of EMA are shown in Table 3 and Table 4. 

 

 
Fig. 2: Measured specimen with applied accelerometers. 

 

Broadband white noise (1 - 1200 Hz) was used for analysis. The measurement was 

performed using Pulse LAN XI 3050-B-060 module and processed in LabShop software. 

Acceleration time histories were recorded and used in numerical analysis, the results of which 

were later correlated with the experiment. 
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Table 2: Failure times. 

Specimen Time to failure 

Specimen No. 3 1040 s (17 min 20 s) 

Specimen No. 5 1445 s (24 min 05 s) 

Specimen No. 6 1000 s (16 min 40 s) 

Specimen No. 7 815 s (13 min 35 s) 

Specimen No. 8 1022 s (17 min 02s) 

Specimen No. 9 820 s (13 min 40 s) 

Specimen No. 10 1132 s (18 min 52 s) 

Specimen No. 11 1150 s (19 min 10 s) 

Specimen No. 12 1470 s (24 min 30 s) 

Specimen No. 13 1058 s (17 min 38 s) 

 

Table 2 shows the results of 10 valid fatigue tests. The time to failure ranged from 815-

1470 seconds. The higher scatter of values was caused by earlier failure of two specimens 

(spec. No. 7 and 9), whose surface around the notch was roughened due to the application of 

an inappropriate technological procedure in the notch production. Therefore, these specimens 

were not included in the statistical processing. The remaining 8 specimens with a smooth 

surface were broken in the time from 1000 to 1470 seconds. Specimen after the fatigue test is 

shown in the Fig. 3. 

 

 
Fig. 3: Specimen after failure. 

 

Numerical simulation. The pre-simulation was carried out in SolidWorks program, where 

the primary calculation containing the PSD response was performed. The PSD response was 

obtained by the linear dynamic random vibration module.  

Since the specimen was firmly attached in the flange, the model had taken all degrees of 

freedom at the point of contact of the specimen with the flange. The PSD function, which can 

be seen in the Fig. 5, was used as an excitation. The PSD was estimated using a periodogram 

in the Matlab program from the actually measured history of acceleration as mentioned above. 

The excitation was performed in a direction perpendicular to the largest specimen area. 

 

 

 
Fig. 4: Numerical model prepared to simulation Fig. 5: PSD response 
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Results comparison of the numerical modal analysis with EMA can be seen in Table 3 and 

Table 4. The results of the numerical analysis are slightly higher. It can be caused due to the 

idealization of boundary conditions (perfect rigid couplings that do not exist in reality). 

Nevertheless, it is possible to state on the basis of the figures from Table 3 that the 

eigenmodes (also the numerical model of the beam) correspond to reality. 

 

Table 3: Comparison of bending eigenmodes.  

Mode Experimental modal analysis Simulation 

1. 

 
 

3. 

 
 

5. 

  

8. 

  
 

Table 4: Modal parameters of the in numerical and experimental analysis. 

Mode 

Numerical 

eigenfrequency 

[Hz] 

Experimental 

eigenfrequency 

[Hz] 

Damping  

[%] 

Mode 

complexity 

1. 31,92 31,80 1,22684 0,01680 

2. 62,21 59,32 0,51345 0,02140 

3. 218,48 191,68 0,45291 0,00278 

4. 283,22 279,79 0,03545 0,04141 

5. 500,64 472,87 0,22234 0,00074 

6. 735,78 728,28 0,31693 0,07025 

7. 856,51 853,03 0,05126 0,05126 

8. 1119,12 1081,9 0,09551 0,00378 

 

Damping, based on Rayleigh damping coefficients, was used to refine the computational 

PSD response model. 
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The result of the simulation is a PSD stress field (von Misses), which is variable depending 

on the frequency (Fig. 6). The most endangered point (node) was selected from the critical 

area and this node was further subjected to a spectral fatigue analysis in the Matlab program. 

A PSD response of this node has been exported from SolidWorks software. 

  

 
Fig. 6: Field of (von Misses) PSD stresses  

 

 

Analytical calculation. A Matlab script has been programmed to determine the frequency 

domain lifespan using the Dirlik, Rayleigh, Zhao-Baker, Lalanne-Rice and Tovo-Benasciutti 

methods.  

The input data for the script were the PSD response curve and the S-N curve. The program 

uses a common interpretation of the S-N curve based on the Basquin equation. The points of 

the S-N curve corresponded to real tests performed on notched standardized specimens of the 

AL 5052-H32 material, which was also used to produce specimens subjected to the fatigue 

test. 

 

 
Fig. 7: PSD response for most critical node (left plot), probability density functions of all 

probability models (right plot) 
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Results are summarized in Fig. 7 and Table 5, where it is possible to see individual 

differences in histories of probability density functions and fatigue life estimate. 
 

Table 5: Results of spectral fatigue analysis. 

Model Damage Time to failure 

Dirlik 0,00089622 1116 s (18 min 36 s) 

Rayleigh 0,0014895 671 s (11 min 11 s) 

Zhao-Baker 0,00073885 1353 s (22 min 33 s) 

Lalanne 0,00092158 1085 s (18 min 05 s) 

Tovo-Benasciutti 0,00090137 1109 s (18 min 29 s) 

T-B Modified 0,00090163 1109 s (18 min 29 s) 

Discussion 

Experiment. As mentioned above, the failure of 8 smooth surface specimens occurred in the 

time from 1000 to 1470 s. The standard deviation in this interval was 175.9 s. In the case of 

specimens 5 and 12, the time to failure was much longer than in the case of other specimens. 

If these specimens were also excluded from the measurement, the time variance would be 

significantly smaller (1000 - 1150 s). When the standard deviation at this interval decreased to 

55.4 s, the mean time to failure was determined based on the times of only 6 specimens (3, 6, 

8, 10, 11 and 13). Thus, it can be stated that the average time to fatigue failure of the tested 

specimens at vibration is 1067 s (17 min 47 s). 

Numerical + analytical solution. If the average failure time of the specimen is 

experimentally set at 1067 s, it can be stated that according to the results in Table 5, the 

fatigue life was the most accurately estimated by the Lalanne model. As the Dirlik and Tovo-

Benasciutti models provide estimates with an error of up to 5%, this can also be taken as a 

positive result. From the PDF histories it can also be stated that the most damaging 

amplitudes were located somewhere in the range of 100-250MPa, where it can be see how the 

Rayleigh model is clearly higher and the Zhao-Baker model is just below the other models. 

Conclusions 

The paper compares models of the probability density function (Dirlik, Rayleigh, Zhao-Baker, 

Lalanne-Rice and Tovo-Benasciutti). The experimentally obtained average time to damage 

under random variable loading was 1067 s. Fatigue life was most accurately predicted by the 

Lalanne (error 1,68%), Tovo-Benasciutti (error 3,94%) and Dirlik (error 4,59%) models. The 

worst prediction of fatigue life was estimated by the Rayleigh model (error 37,11%). The 

differences in the results can be attributed to the ideal rigid of the specimens in the FEM 

program, the approximation of the PSD signal, the damping of the individual eigenmodes, and 

the accuracy of the S-N curves. 
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